-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
mod.rs
1417 lines (1212 loc) · 43.4 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*! Synchronous I/O
This module defines the Rust interface for synchronous I/O.
It models byte-oriented input and output with the Reader and Writer traits.
Types that implement both `Reader` and `Writer` are called 'streams',
and automatically implement the `Stream` trait.
Implementations are provided for common I/O streams like
file, TCP, UDP, Unix domain sockets.
Readers and Writers may be composed to add capabilities like string
parsing, encoding, and compression.
# Examples
Some examples of obvious things you might want to do
* Read lines from stdin
```rust
use std::io::buffered::BufferedReader;
use std::io::stdin;
# let _g = ::std::io::ignore_io_error();
let mut stdin = BufferedReader::new(stdin());
for line in stdin.lines() {
print!("{}", line);
}
```
* Read a complete file
```rust
use std::io::File;
# let _g = ::std::io::ignore_io_error();
let contents = File::open(&Path::new("message.txt")).read_to_end();
```
* Write a line to a file
```rust
use std::io::File;
# let _g = ::std::io::ignore_io_error();
let mut file = File::create(&Path::new("message.txt"));
file.write(bytes!("hello, file!\n"));
# drop(file);
# ::std::io::fs::unlink(&Path::new("message.txt"));
```
* Iterate over the lines of a file
```rust
use std::io::buffered::BufferedReader;
use std::io::File;
# let _g = ::std::io::ignore_io_error();
let path = Path::new("message.txt");
let mut file = BufferedReader::new(File::open(&path));
for line in file.lines() {
print!("{}", line);
}
```
* Pull the lines of a file into a vector of strings
```rust
use std::io::buffered::BufferedReader;
use std::io::File;
# let _g = ::std::io::ignore_io_error();
let path = Path::new("message.txt");
let mut file = BufferedReader::new(File::open(&path));
let lines: ~[~str] = file.lines().collect();
```
* Make an simple HTTP request
XXX This needs more improvement: TcpStream constructor taking &str,
`write_str` and `write_line` methods.
```rust,should_fail
use std::io::net::ip::SocketAddr;
use std::io::net::tcp::TcpStream;
# let _g = ::std::io::ignore_io_error();
let addr = from_str::<SocketAddr>("127.0.0.1:8080").unwrap();
let mut socket = TcpStream::connect(addr).unwrap();
socket.write(bytes!("GET / HTTP/1.0\n\n"));
let response = socket.read_to_end();
```
* Connect based on URL? Requires thinking about where the URL type lives
and how to make protocol handlers extensible, e.g. the "tcp" protocol
yields a `TcpStream`.
XXX this is not implemented now.
```rust
// connect("tcp://localhost:8080");
```
# Terms
* Reader - An I/O source, reads bytes into a buffer
* Writer - An I/O sink, writes bytes from a buffer
* Stream - Typical I/O sources like files and sockets are both Readers and Writers,
and are collectively referred to a `streams`.
such as encoding or decoding
# Blocking and synchrony
When discussing I/O you often hear the terms 'synchronous' and
'asynchronous', along with 'blocking' and 'non-blocking' compared and
contrasted. A synchronous I/O interface performs each I/O operation to
completion before proceeding to the next. Synchronous interfaces are
usually used in imperative style as a sequence of commands. An
asynchronous interface allows multiple I/O requests to be issued
simultaneously, without waiting for each to complete before proceeding
to the next.
Asynchronous interfaces are used to achieve 'non-blocking' I/O. In
traditional single-threaded systems, performing a synchronous I/O
operation means that the program stops all activity (it 'blocks')
until the I/O is complete. Blocking is bad for performance when
there are other computations that could be done.
Asynchronous interfaces are most often associated with the callback
(continuation-passing) style popularised by node.js. Such systems rely
on all computations being run inside an event loop which maintains a
list of all pending I/O events; when one completes the registered
callback is run and the code that made the I/O request continues.
Such interfaces achieve non-blocking at the expense of being more
difficult to reason about.
Rust's I/O interface is synchronous - easy to read - and non-blocking by default.
Remember that Rust tasks are 'green threads', lightweight threads that
are multiplexed onto a single operating system thread. If that system
thread blocks then no other task may proceed. Rust tasks are
relatively cheap to create, so as long as other tasks are free to
execute then non-blocking code may be written by simply creating a new
task.
When discussing blocking in regards to Rust's I/O model, we are
concerned with whether performing I/O blocks other Rust tasks from
proceeding. In other words, when a task calls `read`, it must then
wait (or 'sleep', or 'block') until the call to `read` is complete.
During this time, other tasks may or may not be executed, depending on
how `read` is implemented.
Rust's default I/O implementation is non-blocking; by cooperating
directly with the task scheduler it arranges to never block progress
of *other* tasks. Under the hood, Rust uses asynchronous I/O via a
per-scheduler (and hence per-thread) event loop. Synchronous I/O
requests are implemented by descheduling the running task and
performing an asynchronous request; the task is only resumed once the
asynchronous request completes.
# Error Handling
I/O is an area where nearly every operation can result in unexpected
errors. It should allow errors to be handled efficiently.
It needs to be convenient to use I/O when you don't care
about dealing with specific errors.
Rust's I/O employs a combination of techniques to reduce boilerplate
while still providing feedback about errors. The basic strategy:
* Errors are fatal by default, resulting in task failure
* Errors raise the `io_error` condition which provides an opportunity to inspect
an IoError object containing details.
* Return values must have a sensible null or zero value which is returned
if a condition is handled successfully. This may be an `Option`, an empty
vector, or other designated error value.
* Common traits are implemented for `Option`, e.g. `impl<R: Reader> Reader for Option<R>`,
so that nullable values do not have to be 'unwrapped' before use.
These features combine in the API to allow for expressions like
`File::create(&Path::new("diary.txt")).write(bytes!("Met a girl.\n"))`
without having to worry about whether "diary.txt" exists or whether
the write succeeds. As written, if either `new` or `write_line`
encounters an error the task will fail.
If you wanted to handle the error though you might write:
```rust
use std::io::File;
use std::io::{IoError, io_error};
let mut error = None;
io_error::cond.trap(|e: IoError| {
error = Some(e);
}).inside(|| {
File::create(&Path::new("diary.txt")).write(bytes!("Met a girl.\n"));
});
if error.is_some() {
println!("failed to write my diary");
}
# ::std::io::fs::unlink(&Path::new("diary.txt"));
```
XXX: Need better condition handling syntax
In this case the condition handler will have the opportunity to
inspect the IoError raised by either the call to `new` or the call to
`write_line`, but then execution will continue.
So what actually happens if `new` encounters an error? To understand
that it's important to know that what `new` returns is not a `File`
but an `Option<File>`. If the file does not open, and the condition
is handled, then `new` will simply return `None`. Because there is an
implementation of `Writer` (the trait required ultimately required for
types to implement `write_line`) there is no need to inspect or unwrap
the `Option<File>` and we simply call `write_line` on it. If `new`
returned a `None` then the followup call to `write_line` will also
raise an error.
## Concerns about this strategy
This structure will encourage a programming style that is prone
to errors similar to null pointer dereferences.
In particular code written to ignore errors and expect conditions to be unhandled
will start passing around null or zero objects when wrapped in a condition handler.
* XXX: How should we use condition handlers that return values?
* XXX: Should EOF raise default conditions when EOF is not an error?
# Issues with i/o scheduler affinity, work stealing, task pinning
# Resource management
* `close` vs. RAII
# Paths, URLs and overloaded constructors
# Scope
In scope for core
* Url?
Some I/O things don't belong in core
- url
- net - `fn connect`
- http
- flate
Out of scope
* Async I/O. We'll probably want it eventually
# XXX Questions and issues
* Should default constructors take `Path` or `&str`? `Path` makes simple cases verbose.
Overloading would be nice.
* Add overloading for Path and &str and Url &str
* stdin/err/out
* print, println, etc.
* fsync
* relationship with filesystem querying, Directory, File types etc.
* Rename Reader/Writer to ByteReader/Writer, make Reader/Writer generic?
* Can Port and Chan be implementations of a generic Reader<T>/Writer<T>?
* Trait for things that are both readers and writers, Stream?
* How to handle newline conversion
* String conversion
* open vs. connect for generic stream opening
* Do we need `close` at all? dtors might be good enough
* How does I/O relate to the Iterator trait?
* std::base64 filters
* Using conditions is a big unknown since we don't have much experience with them
* Too many uses of OtherIoError
*/
#[allow(missing_doc)];
use cast;
use char::Char;
use condition::Guard;
use container::Container;
use int;
use iter::Iterator;
use option::{Option, Some, None};
use path::Path;
use result::{Ok, Err, Result};
use str;
use str::{StrSlice, OwnedStr};
use to_str::ToStr;
use uint;
use unstable::finally::Finally;
use vec::{OwnedVector, MutableVector, ImmutableVector, OwnedCopyableVector};
use vec;
// Reexports
pub use self::stdio::stdin;
pub use self::stdio::stdout;
pub use self::stdio::stderr;
pub use self::stdio::print;
pub use self::stdio::println;
pub use self::fs::File;
pub use self::timer::Timer;
pub use self::net::ip::IpAddr;
pub use self::net::tcp::TcpListener;
pub use self::net::tcp::TcpStream;
pub use self::net::udp::UdpStream;
pub use self::pipe::PipeStream;
pub use self::process::Process;
/// Various utility functions useful for writing I/O tests
pub mod test;
/// Synchronous, non-blocking filesystem operations.
pub mod fs;
/// Synchronous, in-memory I/O.
pub mod pipe;
/// Child process management.
pub mod process;
/// Synchronous, non-blocking network I/O.
pub mod net;
/// Readers and Writers for memory buffers and strings.
pub mod mem;
/// Non-blocking access to stdin, stdout, stderr
pub mod stdio;
/// Implementations for Option
mod option;
/// Basic stream compression. XXX: Belongs with other flate code
pub mod flate;
/// Extension traits
pub mod extensions;
/// Basic Timer
pub mod timer;
/// Buffered I/O wrappers
pub mod buffered;
/// Signal handling
pub mod signal;
/// Utility implementations of Reader and Writer
pub mod util;
/// Adapatation of Chan/Port types to a Writer/Reader type.
pub mod comm_adapters;
/// The default buffer size for various I/O operations
static DEFAULT_BUF_SIZE: uint = 1024 * 64;
/// The type passed to I/O condition handlers to indicate error
///
/// # XXX
///
/// Is something like this sufficient? It's kind of archaic
pub struct IoError {
kind: IoErrorKind,
desc: &'static str,
detail: Option<~str>
}
// FIXME: #8242 implementing manually because deriving doesn't work for some reason
impl ToStr for IoError {
fn to_str(&self) -> ~str {
let mut s = ~"IoError { kind: ";
s.push_str(self.kind.to_str());
s.push_str(", desc: ");
s.push_str(self.desc);
s.push_str(", detail: ");
s.push_str(self.detail.to_str());
s.push_str(" }");
s
}
}
#[deriving(Eq)]
pub enum IoErrorKind {
PreviousIoError,
OtherIoError,
EndOfFile,
FileNotFound,
PermissionDenied,
ConnectionFailed,
Closed,
ConnectionRefused,
ConnectionReset,
ConnectionAborted,
NotConnected,
BrokenPipe,
PathAlreadyExists,
PathDoesntExist,
MismatchedFileTypeForOperation,
ResourceUnavailable,
IoUnavailable,
InvalidInput,
}
// FIXME: #8242 implementing manually because deriving doesn't work for some reason
impl ToStr for IoErrorKind {
fn to_str(&self) -> ~str {
match *self {
PreviousIoError => ~"PreviousIoError",
OtherIoError => ~"OtherIoError",
EndOfFile => ~"EndOfFile",
FileNotFound => ~"FileNotFound",
PermissionDenied => ~"PermissionDenied",
ConnectionFailed => ~"ConnectionFailed",
Closed => ~"Closed",
ConnectionRefused => ~"ConnectionRefused",
ConnectionReset => ~"ConnectionReset",
NotConnected => ~"NotConnected",
BrokenPipe => ~"BrokenPipe",
PathAlreadyExists => ~"PathAlreadyExists",
PathDoesntExist => ~"PathDoesntExist",
MismatchedFileTypeForOperation => ~"MismatchedFileTypeForOperation",
IoUnavailable => ~"IoUnavailable",
ResourceUnavailable => ~"ResourceUnavailable",
ConnectionAborted => ~"ConnectionAborted",
InvalidInput => ~"InvalidInput",
}
}
}
// XXX: Can't put doc comments on macros
// Raised by `I/O` operations on error.
condition! {
pub io_error: IoError -> ();
}
/// Helper for wrapper calls where you want to
/// ignore any io_errors that might be raised
pub fn ignore_io_error() -> Guard<'static,IoError,()> {
io_error::cond.trap(|_| {
// just swallow the error.. downstream users
// who can make a decision based on a None result
// won't care
}).guard()
}
/// Helper for catching an I/O error and wrapping it in a Result object. The
/// return result will be the last I/O error that happened or the result of the
/// closure if no error occurred.
pub fn result<T>(cb: || -> T) -> Result<T, IoError> {
let mut err = None;
let ret = io_error::cond.trap(|e| {
if err.is_none() {
err = Some(e);
}
}).inside(cb);
match err {
Some(e) => Err(e),
None => Ok(ret),
}
}
pub trait Reader {
// Only two methods which need to get implemented for this trait
/// Read bytes, up to the length of `buf` and place them in `buf`.
/// Returns the number of bytes read. The number of bytes read my
/// be less than the number requested, even 0. Returns `None` on EOF.
///
/// # Failure
///
/// Raises the `io_error` condition on error. If the condition
/// is handled then no guarantee is made about the number of bytes
/// read and the contents of `buf`. If the condition is handled
/// returns `None` (XXX see below).
///
/// # XXX
///
/// * Should raise_default error on eof?
/// * If the condition is handled it should still return the bytes read,
/// in which case there's no need to return Option - but then you *have*
/// to install a handler to detect eof.
///
/// This doesn't take a `len` argument like the old `read`.
/// Will people often need to slice their vectors to call this
/// and will that be annoying?
/// Is it actually possible for 0 bytes to be read successfully?
fn read(&mut self, buf: &mut [u8]) -> Option<uint>;
// Convenient helper methods based on the above methods
/// Reads a single byte. Returns `None` on EOF.
///
/// # Failure
///
/// Raises the same conditions as the `read` method. Returns
/// `None` if the condition is handled.
fn read_byte(&mut self) -> Option<u8> {
let mut buf = [0];
match self.read(buf) {
Some(0) => {
debug!("read 0 bytes. trying again");
self.read_byte()
}
Some(1) => Some(buf[0]),
Some(_) => unreachable!(),
None => None
}
}
/// Reads `len` bytes and appends them to a vector.
///
/// May push fewer than the requested number of bytes on error
/// or EOF. Returns true on success, false on EOF or error.
///
/// # Failure
///
/// Raises the same conditions as `read`. Additionally raises `io_error`
/// on EOF. If `io_error` is handled then `push_bytes` may push less
/// than the requested number of bytes.
fn push_bytes(&mut self, buf: &mut ~[u8], len: uint) {
unsafe {
let start_len = buf.len();
let mut total_read = 0;
buf.reserve_additional(len);
buf.set_len(start_len + len);
(|| {
while total_read < len {
let len = buf.len();
let slice = buf.mut_slice(start_len + total_read, len);
match self.read(slice) {
Some(nread) => {
total_read += nread;
}
None => {
io_error::cond.raise(standard_error(EndOfFile));
break;
}
}
}
}).finally(|| buf.set_len(start_len + total_read))
}
}
/// Reads `len` bytes and gives you back a new vector of length `len`
///
/// # Failure
///
/// Raises the same conditions as `read`. Additionally raises `io_error`
/// on EOF. If `io_error` is handled then the returned vector may
/// contain less than the requested number of bytes.
fn read_bytes(&mut self, len: uint) -> ~[u8] {
let mut buf = vec::with_capacity(len);
self.push_bytes(&mut buf, len);
return buf;
}
/// Reads all remaining bytes from the stream.
///
/// # Failure
///
/// Raises the same conditions as the `read` method except for
/// `EndOfFile` which is swallowed.
fn read_to_end(&mut self) -> ~[u8] {
let mut buf = vec::with_capacity(DEFAULT_BUF_SIZE);
let mut keep_reading = true;
io_error::cond.trap(|e| {
if e.kind == EndOfFile {
keep_reading = false;
} else {
io_error::cond.raise(e)
}
}).inside(|| {
while keep_reading {
self.push_bytes(&mut buf, DEFAULT_BUF_SIZE)
}
});
return buf;
}
/// Reads all of the remaining bytes of this stream, interpreting them as a
/// UTF-8 encoded stream. The corresponding string is returned.
///
/// # Failure
///
/// This function will raise all the same conditions as the `read` method,
/// along with raising a condition if the input is not valid UTF-8.
fn read_to_str(&mut self) -> ~str {
match str::from_utf8_owned_opt(self.read_to_end()) {
Some(s) => s,
None => {
io_error::cond.raise(standard_error(InvalidInput));
~""
}
}
}
/// Create an iterator that reads a single byte on
/// each iteration, until EOF.
///
/// # Failure
///
/// Raises the same conditions as the `read` method, for
/// each call to its `.next()` method.
/// Ends the iteration if the condition is handled.
fn bytes<'r>(&'r mut self) -> extensions::ByteIterator<'r, Self> {
extensions::ByteIterator::new(self)
}
// Byte conversion helpers
/// Reads `n` little-endian unsigned integer bytes.
///
/// `n` must be between 1 and 8, inclusive.
fn read_le_uint_n(&mut self, nbytes: uint) -> u64 {
assert!(nbytes > 0 && nbytes <= 8);
let mut val = 0u64;
let mut pos = 0;
let mut i = nbytes;
while i > 0 {
val += (self.read_u8() as u64) << pos;
pos += 8;
i -= 1;
}
val
}
/// Reads `n` little-endian signed integer bytes.
///
/// `n` must be between 1 and 8, inclusive.
fn read_le_int_n(&mut self, nbytes: uint) -> i64 {
extend_sign(self.read_le_uint_n(nbytes), nbytes)
}
/// Reads `n` big-endian unsigned integer bytes.
///
/// `n` must be between 1 and 8, inclusive.
fn read_be_uint_n(&mut self, nbytes: uint) -> u64 {
assert!(nbytes > 0 && nbytes <= 8);
let mut val = 0u64;
let mut i = nbytes;
while i > 0 {
i -= 1;
val += (self.read_u8() as u64) << i * 8;
}
val
}
/// Reads `n` big-endian signed integer bytes.
///
/// `n` must be between 1 and 8, inclusive.
fn read_be_int_n(&mut self, nbytes: uint) -> i64 {
extend_sign(self.read_be_uint_n(nbytes), nbytes)
}
/// Reads a little-endian unsigned integer.
///
/// The number of bytes returned is system-dependant.
fn read_le_uint(&mut self) -> uint {
self.read_le_uint_n(uint::bytes) as uint
}
/// Reads a little-endian integer.
///
/// The number of bytes returned is system-dependant.
fn read_le_int(&mut self) -> int {
self.read_le_int_n(int::bytes) as int
}
/// Reads a big-endian unsigned integer.
///
/// The number of bytes returned is system-dependant.
fn read_be_uint(&mut self) -> uint {
self.read_be_uint_n(uint::bytes) as uint
}
/// Reads a big-endian integer.
///
/// The number of bytes returned is system-dependant.
fn read_be_int(&mut self) -> int {
self.read_be_int_n(int::bytes) as int
}
/// Reads a big-endian `u64`.
///
/// `u64`s are 8 bytes long.
fn read_be_u64(&mut self) -> u64 {
self.read_be_uint_n(8)
}
/// Reads a big-endian `u32`.
///
/// `u32`s are 4 bytes long.
fn read_be_u32(&mut self) -> u32 {
self.read_be_uint_n(4) as u32
}
/// Reads a big-endian `u16`.
///
/// `u16`s are 2 bytes long.
fn read_be_u16(&mut self) -> u16 {
self.read_be_uint_n(2) as u16
}
/// Reads a big-endian `i64`.
///
/// `i64`s are 8 bytes long.
fn read_be_i64(&mut self) -> i64 {
self.read_be_int_n(8)
}
/// Reads a big-endian `i32`.
///
/// `i32`s are 4 bytes long.
fn read_be_i32(&mut self) -> i32 {
self.read_be_int_n(4) as i32
}
/// Reads a big-endian `i16`.
///
/// `i16`s are 2 bytes long.
fn read_be_i16(&mut self) -> i16 {
self.read_be_int_n(2) as i16
}
/// Reads a big-endian `f64`.
///
/// `f64`s are 8 byte, IEEE754 double-precision floating point numbers.
fn read_be_f64(&mut self) -> f64 {
unsafe {
cast::transmute::<u64, f64>(self.read_be_u64())
}
}
/// Reads a big-endian `f32`.
///
/// `f32`s are 4 byte, IEEE754 single-precision floating point numbers.
fn read_be_f32(&mut self) -> f32 {
unsafe {
cast::transmute::<u32, f32>(self.read_be_u32())
}
}
/// Reads a little-endian `u64`.
///
/// `u64`s are 8 bytes long.
fn read_le_u64(&mut self) -> u64 {
self.read_le_uint_n(8)
}
/// Reads a little-endian `u32`.
///
/// `u32`s are 4 bytes long.
fn read_le_u32(&mut self) -> u32 {
self.read_le_uint_n(4) as u32
}
/// Reads a little-endian `u16`.
///
/// `u16`s are 2 bytes long.
fn read_le_u16(&mut self) -> u16 {
self.read_le_uint_n(2) as u16
}
/// Reads a little-endian `i64`.
///
/// `i64`s are 8 bytes long.
fn read_le_i64(&mut self) -> i64 {
self.read_le_int_n(8)
}
/// Reads a little-endian `i32`.
///
/// `i32`s are 4 bytes long.
fn read_le_i32(&mut self) -> i32 {
self.read_le_int_n(4) as i32
}
/// Reads a little-endian `i16`.
///
/// `i16`s are 2 bytes long.
fn read_le_i16(&mut self) -> i16 {
self.read_le_int_n(2) as i16
}
/// Reads a little-endian `f64`.
///
/// `f64`s are 8 byte, IEEE754 double-precision floating point numbers.
fn read_le_f64(&mut self) -> f64 {
unsafe {
cast::transmute::<u64, f64>(self.read_le_u64())
}
}
/// Reads a little-endian `f32`.
///
/// `f32`s are 4 byte, IEEE754 single-precision floating point numbers.
fn read_le_f32(&mut self) -> f32 {
unsafe {
cast::transmute::<u32, f32>(self.read_le_u32())
}
}
/// Read a u8.
///
/// `u8`s are 1 byte.
fn read_u8(&mut self) -> u8 {
match self.read_byte() {
Some(b) => b,
None => 0
}
}
/// Read an i8.
///
/// `i8`s are 1 byte.
fn read_i8(&mut self) -> i8 {
match self.read_byte() {
Some(b) => b as i8,
None => 0
}
}
}
impl Reader for ~Reader {
fn read(&mut self, buf: &mut [u8]) -> Option<uint> { self.read(buf) }
}
impl<'a> Reader for &'a mut Reader {
fn read(&mut self, buf: &mut [u8]) -> Option<uint> { self.read(buf) }
}
fn extend_sign(val: u64, nbytes: uint) -> i64 {
let shift = (8 - nbytes) * 8;
(val << shift) as i64 >> shift
}
pub trait Writer {
/// Write the given buffer
///
/// # Failure
///
/// Raises the `io_error` condition on error
fn write(&mut self, buf: &[u8]);
/// Flush this output stream, ensuring that all intermediately buffered
/// contents reach their destination.
///
/// This is by default a no-op and implementers of the `Writer` trait should
/// decide whether their stream needs to be buffered or not.
fn flush(&mut self) {}
/// Write a rust string into this sink.
///
/// The bytes written will be the UTF-8 encoded version of the input string.
/// If other encodings are desired, it is recommended to compose this stream
/// with another performing the conversion, or to use `write` with a
/// converted byte-array instead.
fn write_str(&mut self, s: &str) {
self.write(s.as_bytes());
}
/// Writes a string into this sink, and then writes a literal newline (`\n`)
/// byte afterwards. Note that the writing of the newline is *not* atomic in
/// the sense that the call to `write` is invoked twice (once with the
/// string and once with a newline character).
///
/// If other encodings or line ending flavors are desired, it is recommended
/// that the `write` method is used specifically instead.
fn write_line(&mut self, s: &str) {
self.write_str(s);
self.write(['\n' as u8]);
}
/// Write a single char, encoded as UTF-8.
fn write_char(&mut self, c: char) {
let mut buf = [0u8, ..4];
let n = c.encode_utf8(buf.as_mut_slice());
self.write(buf.slice_to(n));
}
/// Write the result of passing n through `int::to_str_bytes`.
fn write_int(&mut self, n: int) {
int::to_str_bytes(n, 10u, |bytes| self.write(bytes))
}
/// Write the result of passing n through `uint::to_str_bytes`.
fn write_uint(&mut self, n: uint) {
uint::to_str_bytes(n, 10u, |bytes| self.write(bytes))
}
/// Write a little-endian uint (number of bytes depends on system).
fn write_le_uint(&mut self, n: uint) {
extensions::u64_to_le_bytes(n as u64, uint::bytes, |v| self.write(v))
}
/// Write a little-endian int (number of bytes depends on system).
fn write_le_int(&mut self, n: int) {
extensions::u64_to_le_bytes(n as u64, int::bytes, |v| self.write(v))
}
/// Write a big-endian uint (number of bytes depends on system).
fn write_be_uint(&mut self, n: uint) {
extensions::u64_to_be_bytes(n as u64, uint::bytes, |v| self.write(v))
}
/// Write a big-endian int (number of bytes depends on system).
fn write_be_int(&mut self, n: int) {
extensions::u64_to_be_bytes(n as u64, int::bytes, |v| self.write(v))
}
/// Write a big-endian u64 (8 bytes).
fn write_be_u64(&mut self, n: u64) {
extensions::u64_to_be_bytes(n, 8u, |v| self.write(v))
}
/// Write a big-endian u32 (4 bytes).
fn write_be_u32(&mut self, n: u32) {
extensions::u64_to_be_bytes(n as u64, 4u, |v| self.write(v))
}
/// Write a big-endian u16 (2 bytes).
fn write_be_u16(&mut self, n: u16) {
extensions::u64_to_be_bytes(n as u64, 2u, |v| self.write(v))
}
/// Write a big-endian i64 (8 bytes).
fn write_be_i64(&mut self, n: i64) {
extensions::u64_to_be_bytes(n as u64, 8u, |v| self.write(v))
}
/// Write a big-endian i32 (4 bytes).
fn write_be_i32(&mut self, n: i32) {
extensions::u64_to_be_bytes(n as u64, 4u, |v| self.write(v))
}
/// Write a big-endian i16 (2 bytes).
fn write_be_i16(&mut self, n: i16) {
extensions::u64_to_be_bytes(n as u64, 2u, |v| self.write(v))
}
/// Write a big-endian IEEE754 double-precision floating-point (8 bytes).
fn write_be_f64(&mut self, f: f64) {
unsafe {
self.write_be_u64(cast::transmute(f))
}
}
/// Write a big-endian IEEE754 single-precision floating-point (4 bytes).
fn write_be_f32(&mut self, f: f32) {
unsafe {
self.write_be_u32(cast::transmute(f))
}
}
/// Write a little-endian u64 (8 bytes).
fn write_le_u64(&mut self, n: u64) {
extensions::u64_to_le_bytes(n, 8u, |v| self.write(v))
}
/// Write a little-endian u32 (4 bytes).
fn write_le_u32(&mut self, n: u32) {
extensions::u64_to_le_bytes(n as u64, 4u, |v| self.write(v))
}
/// Write a little-endian u16 (2 bytes).
fn write_le_u16(&mut self, n: u16) {
extensions::u64_to_le_bytes(n as u64, 2u, |v| self.write(v))
}
/// Write a little-endian i64 (8 bytes).
fn write_le_i64(&mut self, n: i64) {
extensions::u64_to_le_bytes(n as u64, 8u, |v| self.write(v))
}
/// Write a little-endian i32 (4 bytes).
fn write_le_i32(&mut self, n: i32) {
extensions::u64_to_le_bytes(n as u64, 4u, |v| self.write(v))
}