-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathBaseTester.py
256 lines (204 loc) · 9.14 KB
/
BaseTester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
import numpy as np
import os
import sys
import time
import torch.optim as optim
import torch.nn as nn
import cv2
import glob
import torchvision.transforms.functional as TF
import torchvision.transforms as transforms
from tqdm import tqdm
from metrics import Accuracy, MIoU
from utils.util import AverageMeter, ensure_dir
from PIL import Image
class BaseTester(object):
def __init__(self,
model,
config,
args,
test_data_loader,
begin_time,
resume_file,
loss_weight,
):
# for general
self.config = config
self.args = args
self.device = torch.device('cpu') if self.args.gpu == -1 else torch.device('cuda:{}'.format(self.args.gpu))
#self.do_predict = do_predict
# for train
#self.visdom = visdom
self.model = model.to(self.device)
self.loss_weight = loss_weight.to(self.device)
self.loss = self._loss(loss_function= self.config.loss).to(self.device)
self.optimizer = self._optimizer(lr_algorithm=self.config.lr_algorithm)
self.lr_scheduler = self._lr_scheduler()
# for time
self.begin_time = begin_time
# for data
self.test_data_loader = test_data_loader
# for resume/save path
self.history = {
'eval': {
'loss': [],
'acc': [],
'miou': [],
'time': [],
},
}
self.test_log_path = os.path.join(self.args.output, 'test', 'log', self.model.name, self.begin_time)
self.predict_path = os.path.join(self.args.output, 'test', 'predict', self.model.name, self.begin_time)
# here begin_time is the same with the time used in BaseTrainer.py
# loading args.weight or the checkpoint-best.pth
self.resume_ckpt_path = resume_file if resume_file is not None else \
os.path.join(self.config.save_dir, self.model.name, self.begin_time, 'checkpoint-best.pth')
ensure_dir(self.test_log_path)
ensure_dir(self.predict_path)
def _optimizer(self, lr_algorithm):
if lr_algorithm == 'adam':
optimizer = optim.Adam(self.model.parameters(),
lr=self.config.init_lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=self.config.weight_decay,
amsgrad=False)
return optimizer
if lr_algorithm == 'sgd':
optimizer = optim.SGD(self.model.parameters(),
lr=self.config.init_lr,
momentum=self.config.momentum,
dampening=0,
weight_decay=self.config.weight_decay,
nesterov=True)
return optimizer
def _loss(self, loss_function):
"""
loss weight, ignore_index
:param loss_function: bce_loss / cross_entropy
:return:
"""
if loss_function == 'bceloss':
loss = nn.BCEWithLogitsLoss(weight=self.loss_weight)
return loss
if loss_function == 'crossentropy':
loss = nn.CrossEntropyLoss(weight=self.loss_weight)
return loss
def _lr_scheduler(self):
lambda1 = lambda epoch: pow((1-((epoch-1)/self.config.epochs)), 0.9)
lr_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda1)
return lr_scheduler
def eval_and_predict(self):
self._resume_ckpt()
self.model.eval()
#predictions = []
#filenames = []
predict_time = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
ave_total_loss = AverageMeter()
ave_acc = AverageMeter()
ave_iou = AverageMeter()
with torch.no_grad():
tic = time.time()
for steps, (data, target, filename) in enumerate(self.test_data_loader,start=1):
# data
data = data.to(self.device, non_blocking=True)
target = target.to(self.device, non_blocking=True)
data_time.update(time.time()-tic)
# output, loss, and metrics
pre_tic = time.time()
logits = self.model(data)
self._save_pred(logits, filename)
predict_time.update(time.time()-pre_tic)
loss = self.loss(logits, target)
acc = Accuracy(logits, target)
miou = MIoU(logits, target, self.config.nb_classes)
# update ave loss and metrics
batch_time.update(time.time()-tic)
tic = time.time()
ave_total_loss.update(loss.data.item())
ave_acc.update(acc)
ave_iou.update(miou)
# display evaluation result at the end
print('Evaluation phase !\n'
'Time: {:.2f}, Data: {:.2f},\n'
'MIoU: {:6.4f}, Accuracy: {:6.4f}, Loss: {:.6f}'
.format(batch_time.average(), data_time.average(),
ave_iou.average(), ave_acc.average(), ave_total_loss.average()))
#print('Saving Predict Map ... ...')
#self._save_pred(predictions, filenames)
print('Prediction Phase !\n'
'Total Time cost: {}s\n'
'Average Time cost per batch: {}s!'
.format(predict_time._get_sum(), predict_time.average()))
self.history['eval']['loss'].append(ave_total_loss.average())
self.history['eval']['acc'].append(ave_acc.average())
self.history['eval']['miou'].append(ave_iou.average())
self.history['eval']['time'].append(predict_time.average())
#TODO
print(" + Saved history of evaluation phase !")
hist_path = os.path.join(self.test_log_path, "history1.txt")
with open(hist_path, 'w') as f:
f.write(str(self.history))
def _save_pred(self, predictions, filenames):
"""
save predictions after evaluation phase
:param predictions: predictions (output of model logits(after softmax))
:param filenames: filenames list correspond to predictions
:return: None
"""
for index, map in enumerate(predictions):
map = torch.argmax(map, dim=0)
map = map * 255
map = np.asarray(map.cpu(), dtype=np.uint8)
map = Image.fromarray(map)
# filename /0.1.png [0] 0 [1] 1
filename = filenames[index].split('/')[-1].split('.')
save_filename = filename[0]+'.'+filename[1]
save_path = os.path.join(self.predict_path, save_filename+'.png')
map.save(save_path)
# pred is tensor --> numpy.ndarray save as single-channel --> save
# get a mask 不用管channel的问题
def _resume_ckpt(self):
print(" + Loading ckpt path : {} ...".format(self.resume_ckpt_path))
checkpoint = torch.load(self.resume_ckpt_path)
self.model.load_state_dict(checkpoint['state_dict'])
print(" + Model State Loaded ! :D ")
self.optimizer.load_state_dict(checkpoint['optimizer'])
print(" + Optimizer State Loaded ! :D ")
print(" + Checkpoint file: '{}' , Loaded ! \n"
" + Prepare to test ! ! !"
.format(self.resume_ckpt_path))
def _untrain_data_transform(self, data):
rgb_mean = (0.4353, 0.4452, 0.4131)
rgb_std = (0.2044, 0.1924, 0.2013)
data = TF.resize(data, size=self.config.input_size)
data = TF.to_tensor(data)
data = TF.normalize(data, mean=rgb_mean, std=rgb_std)
return data
# Using for predicting only
def prediction(self, data_loader_for_predict):
self._resume_ckpt()
self.model.eval()
predict_time = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
with torch.no_grad():
tic = time.time()
for steps, (data, target, filenames) in enumerate(data_loader_for_predict, start=1):
# data
data = data.to(self.device, non_blocking=True)
data_time.update(time.time() - tic)
pre_tic = time.time()
logits = self.model(data)
predict_time.update(time.time() - pre_tic)
self._save_pred(logits, filenames)
batch_time.update(time.time() - tic)
tic = time.time()
print("Predicting and Saving Done!\n"
"Total Time: {:.2f}\n"
"Data Time: {:.2f}\n"
"Pre Time: {:.2f}"
.format(batch_time._get_sum(), data_time._get_sum(), predict_time._get_sum()))