-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtest_net.py
116 lines (99 loc) · 4.04 KB
/
test_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
import sys; sys.path.insert(0, './')
from iPerceive.utils.env import setup_environment # noqa F401 isort:skip
import argparse
import os
import torch
from iPerceive.config import cfg
from iPerceive.data import make_data_loader
from iPerceive.engine.inference import inference
from iPerceive.modeling.detector import build_detection_model
from iPerceive.utils.checkpoint import DetectronCheckpointer
from iPerceive.utils.collect_env import collect_env_info
from iPerceive.utils.comm import synchronize, get_rank
from iPerceive.utils.logger import setup_logger
from iPerceive.utils.miscellaneous import mkdir
torch.multiprocessing.set_sharing_strategy('file_system')
# Check if we can enable mixed-precision via apex.amp
#try:
# from apex import amp
#except ImportError:
# raise ImportError('Use APEX for mixed precision via apex.amp')
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference")
parser.add_argument(
"--config-file",
#default="configs/e2e_mask_rcnn_R_101_FPN_1x.yaml",
default="configs/test.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--ckpt",
help="The path to the checkpoint for test, default is the latest checkpoint.",
default="./model_final.pth",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
distributed = num_gpus > 1
if distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
save_dir = ""
logger = setup_logger("iPerceive", save_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(cfg)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
model = build_detection_model(cfg)
model.to(cfg.MODEL.DEVICE)
# Initialize mixed-precision if necessary
#use_mixed_precision = cfg.DTYPE == 'float16'
#amp_handle = amp.init(enabled=use_mixed_precision, verbose=cfg.AMP_VERBOSE)
output_dir = cfg.OUTPUT_DIR
checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir)
ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt
_ = checkpointer.load(ckpt, use_latest=args.ckpt is None)
iou_types = ("bbox",)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ("segm",)
if cfg.MODEL.KEYPOINT_ON:
iou_types = iou_types + ("keypoints",)
output_folders = [None] * len(cfg.DATASETS.TEST)
dataset_names = cfg.DATASETS.TEST
if cfg.OUTPUT_DIR:
for idx, dataset_name in enumerate(dataset_names):
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
mkdir(output_folder)
output_folders[idx] = output_folder
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val):
inference(
model,
data_loader_val,
dataset_name=dataset_name,
iou_types=iou_types,
box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
device=cfg.MODEL.DEVICE,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=output_folder,
)
synchronize()
if __name__ == "__main__":
main()