forked from cxd4/rsp
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathsu.c
2098 lines (1979 loc) · 69.4 KB
/
su.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/******************************************************************************\
* Project: MSP Simulation Layer for Scalar Unit Operations *
* Authors: Iconoclast *
* Release: 2019.08.06 *
* License: CC0 Public Domain Dedication *
* *
* To the extent possible under law, the author(s) have dedicated all copyright *
* and related and neighboring rights to this software to the public domain *
* worldwide. This software is distributed without any warranty. *
* *
* You should have received a copy of the CC0 Public Domain Dedication along *
* with this software. *
* If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. *
\******************************************************************************/
#include "su.h"
/*
* including modular interface structure to access configuration settings...
* Some of the parallel timing features require perfect timing or configs.
*/
#include "module.h"
/* memcpy() and memset() in SP DMA */
#include <string.h>
u32 inst_word;
u32 SR[NUMBER_OF_SCALAR_REGISTERS];
typedef VECTOR_OPERATION(*p_vector_func)(v16, v16);
pu8 DRAM;
pu8 DMEM;
pu8 IMEM;
unsigned long su_max_address = 0x007FFFFFul;
static int temp_PC;
NOINLINE void res_S(void)
{
message("RESERVED.");
return;
}
void set_PC(unsigned int address)
{
temp_PC = 0x04001000 + FIT_IMEM(address);
#ifndef EMULATE_STATIC_PC
stage = 1;
#endif
return;
}
pu32 CR[NUMBER_OF_CP0_REGISTERS];
u8 conf[32];
int MF_SP_STATUS_TIMEOUT;
void SP_CP0_MF(unsigned int rt, unsigned int rd)
{
SR[rt] = *(CR[rd %= NUMBER_OF_CP0_REGISTERS]);
SR[zero] = 0x00000000;
if (rd == 0x7) {
if (CFG_MEND_SEMAPHORE_LOCK == 0)
return;
GET_RCP_REG(SP_SEMAPHORE_REG) = 0x00000001;
GET_RCP_REG(SP_STATUS_REG) |= SP_STATUS_HALT; /* temporary hack */
return;
}
#ifdef WAIT_FOR_CPU_HOST
if (rd == 0x4) {
MFC0_count[rt] += 1;
GET_RCP_REG(SP_STATUS_REG) |= (MFC0_count[rt] >= MF_SP_STATUS_TIMEOUT);
}
#endif
return;
}
static void MT_DMA_CACHE(unsigned int rt)
{
*CR[0x0] = SR[rt] & 0xFFFFFFF8ul; /* & 0x00001FF8 */
return; /* Reserved upper bits are ignored during DMA R/W. */
}
static void MT_DMA_DRAM(unsigned int rt)
{
*CR[0x1] = SR[rt] & 0xFFFFFFF8ul; /* & 0x00FFFFF8 */
return; /* Let the reserved bits get sent, but the pointer is 24-bit. */
}
static void MT_DMA_READ_LENGTH(unsigned int rt)
{
*CR[0x2] = SR[rt] | 07;
SP_DMA_READ();
return;
}
static void MT_DMA_WRITE_LENGTH(unsigned int rt)
{
*CR[0x3] = SR[rt] | 07;
SP_DMA_WRITE();
return;
}
static void MT_SP_STATUS(unsigned int rt)
{
pu32 MI_INTR_REG;
pu32 SP_STATUS_REG;
if (SR[rt] & 0xFE000040)
message("MTC0\nSP_STATUS"); /* bits we don't know what to do with */
SP_STATUS_REG = GET_RSP_INFO(SP_STATUS_REG);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00000001) << 0);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00000004) << 1);
/* DMA_BUSY, DMA_FULL, IO_FULL: No feature exists to clear these. */
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00000020) << 5);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00000080) << 6);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00000200) << 7);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00000800) << 8);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00002000) << 9);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00008000) << 10);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00020000) << 11);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00080000) << 12);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00200000) << 13);
*SP_STATUS_REG &= ~(!!(SR[rt] & 0x00800000) << 14);
*SP_STATUS_REG |= (!!(SR[rt] & 0x00000002) << 0);
/* No feature exists to set BROKE: (!!1 << 1) */
/* DMA_BUSY, DMA_FULL, IO_FULL: No feature exists to set these. */
*SP_STATUS_REG |= (!!(SR[rt] & 0x00000040) << 5);
*SP_STATUS_REG |= (!!(SR[rt] & 0x00000100) << 6);
*SP_STATUS_REG |= (!!(SR[rt] & 0x00000400) << 7); /* yield request? */
*SP_STATUS_REG |= (!!(SR[rt] & 0x00001000) << 8); /* yielded? */
*SP_STATUS_REG |= (!!(SR[rt] & 0x00004000) << 9); /* task done? */
*SP_STATUS_REG |= (!!(SR[rt] & 0x00010000) << 10);
*SP_STATUS_REG |= (!!(SR[rt] & 0x00040000) << 11);
*SP_STATUS_REG |= (!!(SR[rt] & 0x00100000) << 12);
*SP_STATUS_REG |= (!!(SR[rt] & 0x00400000) << 13);
*SP_STATUS_REG |= (!!(SR[rt] & 0x01000000) << 14);
MI_INTR_REG = GET_RSP_INFO(MI_INTR_REG);
*MI_INTR_REG &= ~((SR[rt] & 0x00000008) >> 3); /* SP_CLR_INTR */
*MI_INTR_REG |= ((SR[rt] & 0x00000010) >> 4); /* SP_SET_INTR */
*SP_STATUS_REG |= (SR[rt] & 0x00000010) >> 4; /* int set halt */
return;
}
static void MT_SP_RESERVED(unsigned int rt)
{
const u32 source = SR[rt] & 0x00000000ul; /* forced (zilmar, dox) */
GET_RCP_REG(SP_SEMAPHORE_REG) = source;
return;
}
static void MT_CMD_START(unsigned int rt)
{
const u32 source = SR[rt] & 0xFFFFFFF8ul; /* Funnelcube demo by marshallh */
if (GET_RCP_REG(DPC_BUFBUSY_REG)) /* lock hazards not implemented */
message("MTC0\nCMD_START");
GET_RCP_REG(DPC_END_REG)
= GET_RCP_REG(DPC_CURRENT_REG)
= GET_RCP_REG(DPC_START_REG)
= source;
return;
}
static void MT_CMD_END(unsigned int rt)
{
if (GET_RCP_REG(DPC_BUFBUSY_REG))
message("MTC0\nCMD_END"); /* This is just CA-related. */
GET_RCP_REG(DPC_END_REG) = SR[rt] & 0xFFFFFFF8ul;
GBI_phase();
return;
}
static void MT_CMD_STATUS(unsigned int rt)
{
pu32 DPC_STATUS_REG;
if (SR[rt] & 0xFFFFFD80ul) /* unsupported or reserved bits */
message("MTC0\nCMD_STATUS");
DPC_STATUS_REG = GET_RSP_INFO(DPC_STATUS_REG);
*DPC_STATUS_REG &= ~(!!(SR[rt] & 0x00000001) << 0);
*DPC_STATUS_REG |= (!!(SR[rt] & 0x00000002) << 0);
*DPC_STATUS_REG &= ~(!!(SR[rt] & 0x00000004) << 1);
*DPC_STATUS_REG |= (!!(SR[rt] & 0x00000008) << 1);
*DPC_STATUS_REG &= ~(!!(SR[rt] & 0x00000010) << 2);
*DPC_STATUS_REG |= (!!(SR[rt] & 0x00000020) << 2);
/* Some NUS-CIC-6105 SP tasks try to clear some DPC cycle timers. */
GET_RCP_REG(DPC_TMEM_REG) &= !(SR[rt] & 0x00000040) ? ~0u : 0u;
/* GET_RCP_REG(DPC_PIPEBUSY_REG) &= !(SR[rt] & 0x00000080) ? ~0u : 0u; */
/* GET_RCP_REG(DPC_BUFBUSY_REG) &= !(SR[rt] & 0x00000100) ? ~0u : 0u; */
GET_RCP_REG(DPC_CLOCK_REG) &= !(SR[rt] & 0x00000200) ? ~0u : 0u;
return;
}
static void MT_CMD_CLOCK(unsigned int rt)
{
message("MTC0\nCMD_CLOCK"); /* read-only?? */
GET_RCP_REG(DPC_CLOCK_REG) = SR[rt];
return; /* Appendix says this is RW; elsewhere it says R. */
}
static void MT_READ_ONLY(unsigned int rt)
{
static char write_to_read_only[] = "Invalid MTC0 from SR[00].";
write_to_read_only[21] = '0' + (unsigned char)rt/10;
write_to_read_only[22] = '0' + (unsigned char)rt%10;
message(write_to_read_only);
return;
}
static void (*SP_CP0_MT[NUMBER_OF_CP0_REGISTERS])(unsigned int) = {
MT_DMA_CACHE ,MT_DMA_DRAM ,MT_DMA_READ_LENGTH ,MT_DMA_WRITE_LENGTH,
MT_SP_STATUS ,MT_READ_ONLY ,MT_READ_ONLY ,MT_SP_RESERVED,
MT_CMD_START ,MT_CMD_END ,MT_READ_ONLY ,MT_CMD_STATUS,
MT_CMD_CLOCK ,MT_READ_ONLY ,MT_READ_ONLY ,MT_READ_ONLY
};
void SP_DMA_READ(void)
{
unsigned int offC, offD; /* SP cache and dynamic DMA pointers */
register unsigned int length;
register unsigned int count;
register unsigned int skip;
length = (GET_RCP_REG(SP_RD_LEN_REG) & 0x00000FFFul) >> 0;
count = (GET_RCP_REG(SP_RD_LEN_REG) & 0x000FF000ul) >> 12;
skip = (GET_RCP_REG(SP_RD_LEN_REG) & 0xFFF00000ul) >> 20;
#ifdef _DEBUG
length |= 07; /* already corrected by mtc0 */
#endif
++length;
++count;
skip += length;
do {
register unsigned int i;
i = 0;
--count;
do {
offC = (count*length + *CR[0x0] + i) & 0x00001FF8ul;
offD = (count*skip + *CR[0x1] + i) & 0x00FFFFF8ul;
i += 0x008;
if (offD > su_max_address) {
memset(DMEM + offC, 0x00, 8);
continue;
}
memcpy(DMEM + offC, DRAM + offD, 8);
} while (i < length);
} while (count);
if ((*CR[0x0] ^ offC) & 0x1000)
message("DMA over the DMEM-to-IMEM gap.");
GET_RCP_REG(SP_DMA_BUSY_REG) = 0x00000000;
GET_RCP_REG(SP_STATUS_REG) &= ~SP_STATUS_DMA_BUSY;
return;
}
void SP_DMA_WRITE(void)
{
unsigned int offC, offD; /* SP cache and dynamic DMA pointers */
register unsigned int length;
register unsigned int count;
register unsigned int skip;
length = (GET_RCP_REG(SP_WR_LEN_REG) & 0x00000FFFul) >> 0;
count = (GET_RCP_REG(SP_WR_LEN_REG) & 0x000FF000ul) >> 12;
skip = (GET_RCP_REG(SP_WR_LEN_REG) & 0xFFF00000ul) >> 20;
#ifdef _DEBUG
length |= 07; /* already corrected by mtc0 */
#endif
++length;
++count;
skip += length;
do {
register unsigned int i;
i = 0;
--count;
do {
offC = (count*length + *CR[0x0] + i) & 0x00001FF8ul;
offD = (count*skip + *CR[0x1] + i) & 0x00FFFFF8ul;
i += 0x000008;
if (offD > su_max_address)
continue;
memcpy(DRAM + offD, DMEM + offC, 8);
} while (i < length);
} while (count);
if ((*CR[0x0] ^ offC) & 0x1000)
message("DMA over the DMEM-to-IMEM gap.");
GET_RCP_REG(SP_DMA_BUSY_REG) = 0x00000000;
GET_RCP_REG(SP_STATUS_REG) &= ~SP_STATUS_DMA_BUSY;
return;
}
/*** scalar, R4000 control flow manipulation ***/
PROFILE_MODE void J(u32 inst)
{
set_PC(4 * inst);
}
PROFILE_MODE void JAL(u32 inst, u32 PC)
{
SR[ra] = FIT_IMEM(PC + LINK_OFF);
set_PC(4 * inst);
}
PROFILE_MODE int BEQ(u32 inst, u32 PC)
{
const unsigned int rs = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
if (!(SR[rs] == SR[rt]))
return 0;
set_PC(PC + 4*inst + SLOT_OFF);
return 1;
}
PROFILE_MODE int BNE(u32 inst, u32 PC)
{
const unsigned int rs = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
if (!(SR[rs] != SR[rt]))
return 0;
set_PC(PC + 4*inst + SLOT_OFF);
return 1;
}
PROFILE_MODE int BLEZ(u32 inst, u32 PC)
{
const unsigned int rs = (inst >> 21) % (1 << 5);
if (!((s32)SR[rs] <= 0))
return 0;
set_PC(PC + 4*inst + SLOT_OFF);
return 1;
}
PROFILE_MODE int BGTZ(u32 inst, u32 PC)
{
const unsigned int rs = (inst >> 21) % (1 << 5);
if (!((s32)SR[rs] > 0))
return 0;
set_PC(PC + 4*inst + SLOT_OFF);
return 1;
}
/*** scalar, R4000 bit-wise logical operations ***/
PROFILE_MODE void ANDI(u32 inst)
{
const u16 immediate = (u16)(inst & 0x0000FFFFu);
const unsigned int rs = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
SR[rt] = SR[rs] & immediate;
SR[zero] = 0x00000000;
}
PROFILE_MODE void ORI(u32 inst)
{
const u16 immediate = (u16)(inst & 0x0000FFFFu);
const unsigned int rs = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
SR[rt] = SR[rs] | immediate;
SR[zero] = 0x00000000;
}
PROFILE_MODE void XORI(u32 inst)
{
const u16 immediate = (u16)(inst & 0x0000FFFFu);
const unsigned int rs = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
SR[rt] = SR[rs] ^ immediate;
SR[zero] = 0x00000000;
}
PROFILE_MODE void LUI(u32 inst)
{
const u16 immediate = (u16)(inst & 0x0000FFFFu);
const unsigned int rt = (inst >> 16) % (1 << 5);
SR[rt] = (u32)immediate << 16; /* or: SR[rt] = 0; SR[rt]31..16 = imm; */
SR[zero] = 0x00000000;
}
/*** scalar, R4000 arithmetic operations ***/
PROFILE_MODE void ADDIU(u32 inst)
{
const u16 immediate = (u16)(inst & 0x0000FFFFu);
const unsigned int rs = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
SR[rt] = SR[rs] + (s16)(immediate);
SR[zero] = 0x00000000;
}
PROFILE_MODE void SLTI(u32 inst)
{
const u16 immediate = (u16)(inst & 0x0000FFFFu);
const unsigned int rs = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
SR[rt] = ((s32)(SR[rs]) < (s32)SIGNED_IMM16(immediate)) ? 1 : 0;
SR[zero] = 0x00000000;
}
PROFILE_MODE void SLTIU(u32 inst)
{
const u16 immediate = (u16)(inst & 0x0000FFFFu);
const unsigned int rs = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
SR[rt] = ((u32)(SR[rs]) < (u32)SIGNED_IMM16(immediate)) ? 1 : 0;
SR[zero] = 0x00000000;
}
/*** scalar, R4000 memory loads and stores ***/
PROFILE_MODE void LB(u32 inst)
{
u32 addr;
const s16 offset = (s16)(inst & 0x0000FFFFul);
const unsigned int base = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
addr = SR[base] + offset;
SR[rt] = DMEM[BES(addr) & 0x00000FFFul];
SR[rt] = (s8)SR[rt];
SR[zero] = 0x00000000;
}
PROFILE_MODE void LH(u32 inst)
{
u32 addr;
const s16 offset = (s16)(inst & 0x0000FFFFul);
const unsigned int base = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
addr = SR[base] + offset;
SR[rt] = 0x00000000
| DMEM[BES(addr + 0) & 0x00000FFFul] << 8
| DMEM[BES(addr + 1) & 0x00000FFFul] << 0
;
SR[rt] = (s16)SR[rt];
SR[zero] = 0x00000000;
}
PROFILE_MODE void LW(u32 inst)
{
u32 addr;
const s16 offset = (s16)(inst & 0x0000FFFFul);
const unsigned int base = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
addr = SR[base] + offset;
SR_B(rt, 0) = DMEM[BES(addr + 0) & 0x00000FFFul];
SR_B(rt, 1) = DMEM[BES(addr + 1) & 0x00000FFFul];
SR_B(rt, 2) = DMEM[BES(addr + 2) & 0x00000FFFul];
SR_B(rt, 3) = DMEM[BES(addr + 3) & 0x00000FFFul];
SR[zero] = 0x00000000;
}
PROFILE_MODE void LBU(u32 inst)
{
u32 addr;
const s16 offset = (s16)(inst & 0x0000FFFFul);
const unsigned int base = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
addr = SR[base] + offset;
SR[rt] = DMEM[BES(addr) & 0x00000FFFul];
SR[zero] = 0x00000000;
}
PROFILE_MODE void LHU(u32 inst)
{
u32 addr;
const s16 offset = (s16)(inst & 0x0000FFFFul);
const unsigned int base = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
addr = SR[base] + offset;
SR[rt] = 0x00000000
| DMEM[BES(addr + 0) & 0x00000FFFul] << 8
| DMEM[BES(addr + 1) & 0x00000FFFul] << 0
;
SR[zero] = 0x00000000;
}
PROFILE_MODE void SB(u32 inst)
{
u32 addr;
const s16 offset = (s16)(inst & 0x0000FFFFul);
const unsigned int base = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
addr = SR[base] + offset;
DMEM[BES(addr) & 0x00000FFFul] = (u8)(SR[rt] & 0xFFu);
}
PROFILE_MODE void SH(u32 inst)
{
u32 addr;
const s16 offset = (s16)(inst & 0x0000FFFFul);
const unsigned int base = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
addr = SR[base] + offset;
DMEM[BES(addr + 0) & 0x00000FFFul] = SR_B(rt, 2);
DMEM[BES(addr + 1) & 0x00000FFFul] = SR_B(rt, 3);
}
PROFILE_MODE void SW(u32 inst)
{
u32 addr;
const s16 offset = (s16)(inst & 0x0000FFFFul);
const unsigned int base = (inst >> 21) % (1 << 5);
const unsigned int rt = (inst >> 16) % (1 << 5);
addr = SR[base] + offset;
DMEM[BES(addr + 0) & 0x00000FFFul] = SR_B(rt, 0);
DMEM[BES(addr + 1) & 0x00000FFFul] = SR_B(rt, 1);
DMEM[BES(addr + 2) & 0x00000FFFul] = SR_B(rt, 2);
DMEM[BES(addr + 3) & 0x00000FFFul] = SR_B(rt, 3);
}
/*** scalar, coprocessor operations (vector unit) ***/
u16 rwR_VCE(void)
{ /* never saw a game try to read VCE out to a scalar GPR yet */
register u16 ret_slot;
ret_slot = 0x00 | (u16)get_VCE();
return (ret_slot);
}
void rwW_VCE(u16 vce)
{ /* never saw a game try to write VCE using a scalar GPR yet */
register int i;
vce = 0x00 | (vce & 0xFF);
for (i = 0; i < 8; i++)
cf_vce[i] = (vce >> i) & 1;
return;
}
static u16 (*R_VCF[4])(void) = {
get_VCO,get_VCC,rwR_VCE,rwR_VCE,
};
static void (*W_VCF[4])(u16) = {
set_VCO,set_VCC,rwW_VCE,rwW_VCE,
};
void MFC2(unsigned int rt, unsigned int vs, unsigned int e)
{
SR_B(rt, 2) = VR_B(vs, e);
e = (e + 0x1) & 0xF;
SR_B(rt, 3) = VR_B(vs, e);
SR[rt] = (s16)(SR[rt]);
SR[zero] = 0x00000000;
return;
}
void MTC2(unsigned int rt, unsigned int vd, unsigned int e)
{
VR_B(vd, e+0x0) = SR_B(rt, 2);
VR_B(vd, e+0x1) = SR_B(rt, 3);
return; /* If element == 0xF, it does not matter; loads do not wrap over. */
}
void CFC2(unsigned int rt, unsigned int rd)
{
SR[rt] = (s16)R_VCF[rd & 3]();
SR[zero] = 0x00000000;
return;
}
void CTC2(unsigned int rt, unsigned int rd)
{
W_VCF[rd & 3](SR[rt] & 0x0000FFFF);
return;
}
/*** scalar, coprocessor operations (vector unit, scalar cache transfers) ***/
void LBV(unsigned vt, unsigned element, signed offset, unsigned base)
{
register u32 addr;
const unsigned int e = element;
addr = (SR[base] + 1*offset) & 0x00000FFF;
VR_B(vt, e) = DMEM[BES(addr)];
return;
}
void LSV(unsigned vt, unsigned element, signed offset, unsigned base)
{
signed int correction;
register u32 addr;
const unsigned int e = element;
if (e & 0x1) {
message("LSV\nIllegal element.");
return;
}
addr = (SR[base] + 2*offset) & 0x00000FFF;
correction = (signed)(addr % 0x004);
if (correction == 0x003) {
message("LSV\nWeird addr.");
return;
}
correction = (correction - 1) * HES(0x000);
VR_S(vt, e) = *(pi16)(DMEM + addr - correction);
return;
}
void LLV(unsigned vt, unsigned element, signed offset, unsigned base)
{
signed int correction;
register u32 addr;
const unsigned int e = element;
if (e & 0x1) {
message("LLV\nOdd element.");
return;
} /* Illegal (but still even) elements are used by Boss Game Studios. */
addr = (SR[base] + 4*offset) & 0x00000FFF;
if (addr & 0x00000001) {
VR_A(vt, e+0x0) = DMEM[BES(addr)];
addr = (addr + 0x00000001) & 0x00000FFF;
VR_U(vt, e+0x1) = DMEM[BES(addr)];
addr = (addr + 0x00000001) & 0x00000FFF;
VR_A(vt, e+0x2) = DMEM[BES(addr)];
addr = (addr + 0x00000001) & 0x00000FFF;
VR_U(vt, e+0x3) = DMEM[BES(addr)];
return;
} /* branch very unlikely: "Star Wars: Battle for Naboo" unaligned addr */
correction = HES(0x000)*(addr%0x004 - 1);
VR_S(vt, e+0x0) = *(pi16)(DMEM + addr - correction);
addr = (addr + 0x00000002) & 0x00000FFF; /* F3DLX 1.23: addr%4 is 0x002. */
VR_S(vt, e+0x2) = *(pi16)(DMEM + addr + correction);
return;
}
void LDV(unsigned vt, unsigned element, signed offset, unsigned base)
{
register u32 addr;
const unsigned int e = element;
if (e & 0x1) {
message("LDV\nOdd element.");
return;
} /* Illegal (but still even) elements are used by Boss Game Studios. */
addr = (SR[base] + 8*offset) & 0x00000FFF;
switch (addr & 07) {
case 00:
VR_S(vt, e+0x0) = *(pi16)(DMEM + addr + HES(0x000));
VR_S(vt, e+0x2) = *(pi16)(DMEM + addr + HES(0x002));
VR_S(vt, e+0x4) = *(pi16)(DMEM + addr + HES(0x004));
VR_S(vt, e+0x6) = *(pi16)(DMEM + addr + HES(0x006));
break;
case 01: /* standard ABI ucodes (unlike e.g. MusyX w/ even addresses) */
VR_S(vt, e+0x0) = *(pi16)(DMEM + addr + 0x000);
VR_A(vt, e+0x2) = DMEM[addr + 0x002 - BES(0x000)];
VR_U(vt, e+0x3) = DMEM[addr + 0x003 + BES(0x000)];
VR_S(vt, e+0x4) = *(pi16)(DMEM + addr + 0x004);
VR_A(vt, e+0x6) = DMEM[addr + 0x006 - BES(0x000)];
addr += 0x007 + BES(00);
addr &= 0x00000FFF;
VR_U(vt, e+0x7) = DMEM[addr];
break;
case 02:
VR_S(vt, e+0x0) = *(pi16)(DMEM + addr + 0x000 - HES(0x000));
VR_S(vt, e+0x2) = *(pi16)(DMEM + addr + 0x002 + HES(0x000));
VR_S(vt, e+0x4) = *(pi16)(DMEM + addr + 0x004 - HES(0x000));
addr += 0x006 + HES(00);
addr &= 0x00000FFF;
VR_S(vt, e+0x6) = *(pi16)(DMEM + addr);
break;
case 03: /* standard ABI ucodes (unlike e.g. MusyX w/ even addresses) */
VR_A(vt, e+0x0) = DMEM[addr + 0x000 - BES(0x000)];
VR_U(vt, e+0x1) = DMEM[addr + 0x001 + BES(0x000)];
VR_S(vt, e+0x2) = *(pi16)(DMEM + addr + 0x002);
VR_A(vt, e+0x4) = DMEM[addr + 0x004 - BES(0x000)];
addr += 0x005 + BES(00);
addr &= 0x00000FFF;
VR_U(vt, e+0x5) = DMEM[addr];
VR_S(vt, e+0x6) = *(pi16)(DMEM + addr + 0x001 - BES(0x000));
break;
case 04:
VR_S(vt, e+0x0) = *(pi16)(DMEM + addr + HES(0x000));
VR_S(vt, e+0x2) = *(pi16)(DMEM + addr + HES(0x002));
addr += 0x004 + WES(00);
addr &= 0x00000FFF;
VR_S(vt, e+0x4) = *(pi16)(DMEM + addr + HES(0x000));
VR_S(vt, e+0x6) = *(pi16)(DMEM + addr + HES(0x002));
break;
case 05: /* standard ABI ucodes (unlike e.g. MusyX w/ even addresses) */
VR_S(vt, e+0x0) = *(pi16)(DMEM + addr + 0x000);
VR_A(vt, e+0x2) = DMEM[addr + 0x002 - BES(0x000)];
addr += 0x003;
addr &= 0x00000FFF;
VR_U(vt, e+0x3) = DMEM[addr + BES(0x000)];
VR_S(vt, e+0x4) = *(pi16)(DMEM + addr + 0x001);
VR_A(vt, e+0x6) = DMEM[addr + BES(0x003)];
VR_U(vt, e+0x7) = DMEM[addr + BES(0x004)];
break;
case 06:
VR_S(vt, e+0x0) = *(pi16)(DMEM + addr - HES(0x000));
addr += 0x002;
addr &= 0x00000FFF;
VR_S(vt, e+0x2) = *(pi16)(DMEM + addr + HES(0x000));
VR_S(vt, e+0x4) = *(pi16)(DMEM + addr + HES(0x002));
VR_S(vt, e+0x6) = *(pi16)(DMEM + addr + HES(0x004));
break;
case 07: /* standard ABI ucodes (unlike e.g. MusyX w/ even addresses) */
VR_A(vt, e+0x0) = DMEM[addr - BES(0x000)];
addr += 0x001;
addr &= 0x00000FFF;
VR_U(vt, e+0x1) = DMEM[addr + BES(0x000)];
VR_S(vt, e+0x2) = *(pi16)(DMEM + addr + 0x001);
VR_A(vt, e+0x4) = DMEM[addr + BES(0x003)];
VR_U(vt, e+0x5) = DMEM[addr + BES(0x004)];
VR_S(vt, e+0x6) = *(pi16)(DMEM + addr + 0x005);
break;
}
return;
}
void SBV(unsigned vt, unsigned element, signed offset, unsigned base)
{
register u32 addr;
const unsigned int e = element;
addr = (SR[base] + 1*offset) & 0x00000FFF;
DMEM[BES(addr)] = VR_B(vt, e);
return;
}
void SSV(unsigned vt, unsigned element, signed offset, unsigned base)
{
register u32 addr;
const unsigned int e = element;
addr = (SR[base] + 2*offset) & 0x00000FFF;
DMEM[BES(addr)] = VR_B(vt, (e + 0x0));
addr = (addr + 0x00000001) & 0x00000FFF;
DMEM[BES(addr)] = VR_B(vt, (e + 0x1) & 0xF);
return;
}
void SLV(unsigned vt, unsigned element, signed offset, unsigned base)
{
signed int correction;
register u32 addr;
const unsigned int e = element;
if ((e & 0x1) || e > 0xC) {
message("SLV\nIllegal element.");
return;
} /* must support illegal even elements in F3DEX2 */
addr = (SR[base] + 4*offset) & 0x00000FFF;
if (addr & 0x00000001) {
message("SLV\nOdd addr.");
return;
}
correction = HES(0x000)*(addr%0x004 - 1);
*(pi16)(DMEM + addr - correction) = VR_S(vt, e+0x0);
addr = (addr + 0x00000002) & 0x00000FFF; /* F3DLX 0.95: "Mario Kart 64" */
*(pi16)(DMEM + addr + correction) = VR_S(vt, e+0x2);
return;
}
void SDV(unsigned vt, unsigned element, signed offset, unsigned base)
{
register u32 addr;
const unsigned int e = element;
addr = (SR[base] + 8*offset) & 0x00000FFF;
if (e > 0x8 || (e & 0x1)) {
register unsigned int i;
#if (VR_STATIC_WRAPAROUND == 1)
vector_copy(VR[vt] + N, VR[vt]);
for (i = 0; i < 8; i++)
DMEM[BES(addr++ & 0x00000FFF)] = VR_B(vt, e + i);
#else
for (i = 0; i < 8; i++)
DMEM[BES(addr++ & 0x00000FFF)] = VR_B(vt, (e+i)&0xF);
#endif
return;
} /* Illegal elements with Boss Game Studios publications. */
switch (addr & 07) {
case 00:
*(pi16)(DMEM + addr + HES(0x000)) = VR_S(vt, e+0x0);
*(pi16)(DMEM + addr + HES(0x002)) = VR_S(vt, e+0x2);
*(pi16)(DMEM + addr + HES(0x004)) = VR_S(vt, e+0x4);
*(pi16)(DMEM + addr + HES(0x006)) = VR_S(vt, e+0x6);
break;
case 01: /* "Tetrisphere" audio ucode */
*(pi16)(DMEM + addr + 0x000) = VR_S(vt, e+0x0);
DMEM[addr + 0x002 - BES(0x000)] = VR_A(vt, e+0x2);
DMEM[addr + 0x003 + BES(0x000)] = VR_U(vt, e+0x3);
*(pi16)(DMEM + addr + 0x004) = VR_S(vt, e+0x4);
DMEM[addr + 0x006 - BES(0x000)] = VR_A(vt, e+0x6);
addr += 0x007 + BES(0x000);
addr &= 0x00000FFF;
DMEM[addr] = VR_U(vt, e+0x7);
break;
case 02:
*(pi16)(DMEM + addr + 0x000 - HES(0x000)) = VR_S(vt, e+0x0);
*(pi16)(DMEM + addr + 0x002 + HES(0x000)) = VR_S(vt, e+0x2);
*(pi16)(DMEM + addr + 0x004 - HES(0x000)) = VR_S(vt, e+0x4);
addr += 0x006 + HES(0x000);
addr &= 0x00000FFF;
*(pi16)(DMEM + addr) = VR_S(vt, e+0x6);
break;
case 03: /* "Tetrisphere" audio ucode */
DMEM[addr + 0x000 - BES(0x000)] = VR_A(vt, e+0x0);
DMEM[addr + 0x001 + BES(0x000)] = VR_U(vt, e+0x1);
*(pi16)(DMEM + addr + 0x002) = VR_S(vt, e+0x2);
DMEM[addr + 0x004 - BES(0x000)] = VR_A(vt, e+0x4);
addr += 0x005 + BES(0x000);
addr &= 0x00000FFF;
DMEM[addr] = VR_U(vt, e+0x5);
*(pi16)(DMEM + addr + 0x001 - BES(0x000)) = VR_S(vt, 0x6);
break;
case 04:
*(pi16)(DMEM + addr + HES(0x000)) = VR_S(vt, e+0x0);
*(pi16)(DMEM + addr + HES(0x002)) = VR_S(vt, e+0x2);
addr = (addr + 0x004) & 0x00000FFF;
*(pi16)(DMEM + addr + HES(0x000)) = VR_S(vt, e+0x4);
*(pi16)(DMEM + addr + HES(0x002)) = VR_S(vt, e+0x6);
break;
case 05: /* "Tetrisphere" audio ucode */
*(pi16)(DMEM + addr + 0x000) = VR_S(vt, e+0x0);
DMEM[addr + 0x002 - BES(0x000)] = VR_A(vt, e+0x2);
addr = (addr + 0x003) & 0x00000FFF;
DMEM[addr + BES(0x000)] = VR_U(vt, e+0x3);
*(pi16)(DMEM + addr + 0x001) = VR_S(vt, e+0x4);
DMEM[addr + BES(0x003)] = VR_A(vt, e+0x6);
DMEM[addr + BES(0x004)] = VR_U(vt, e+0x7);
break;
case 06:
*(pi16)(DMEM + addr - HES(0x000)) = VR_S(vt, e+0x0);
addr = (addr + 0x002) & 0x00000FFF;
*(pi16)(DMEM + addr + HES(0x000)) = VR_S(vt, e+0x2);
*(pi16)(DMEM + addr + HES(0x002)) = VR_S(vt, e+0x4);
*(pi16)(DMEM + addr + HES(0x004)) = VR_S(vt, e+0x6);
break;
case 07: /* "Tetrisphere" audio ucode */
DMEM[addr - BES(0x000)] = VR_A(vt, e+0x0);
addr = (addr + 0x001) & 0x00000FFF;
DMEM[addr + BES(0x000)] = VR_U(vt, e+0x1);
*(pi16)(DMEM + addr + 0x001) = VR_S(vt, e+0x2);
DMEM[addr + BES(0x003)] = VR_A(vt, e+0x4);
DMEM[addr + BES(0x004)] = VR_U(vt, e+0x5);
*(pi16)(DMEM + addr + 0x005) = VR_S(vt, e+0x6);
break;
}
return;
}
NOINLINE void
res_lsw(unsigned vt, unsigned element, signed offset, unsigned base)
{
message("Reserved vector unit transfer operation.");
if (vt != element + base || offset != 0) /* unused parameters */
return;
return;
}
/*
* Group II vector loads and stores:
* PV and UV (As of RCP implementation, XV and ZV are reserved opcodes.)
*/
void LPV(unsigned vt, unsigned element, signed offset, unsigned base)
{
register u32 addr;
register int b;
const unsigned int e = element;
if (e != 0x0) {
message("LPV\nIllegal element.");
return;
}
addr = (SR[base] + 8*offset) & 0x00000FFF;
b = addr & 07;
addr &= ~07;
switch (b) {
case 00:
VR[vt][07] = DMEM[addr + BES(0x007)] << 8;
VR[vt][06] = DMEM[addr + BES(0x006)] << 8;
VR[vt][05] = DMEM[addr + BES(0x005)] << 8;
VR[vt][04] = DMEM[addr + BES(0x004)] << 8;
VR[vt][03] = DMEM[addr + BES(0x003)] << 8;
VR[vt][02] = DMEM[addr + BES(0x002)] << 8;
VR[vt][01] = DMEM[addr + BES(0x001)] << 8;
VR[vt][00] = DMEM[addr + BES(0x000)] << 8;
break;
case 01: /* F3DZEX 2.08J "Doubutsu no Mori" (Animal Forest) CPU CFB */
VR[vt][00] = DMEM[addr + BES(0x001)] << 8;
VR[vt][01] = DMEM[addr + BES(0x002)] << 8;
VR[vt][02] = DMEM[addr + BES(0x003)] << 8;
VR[vt][03] = DMEM[addr + BES(0x004)] << 8;
VR[vt][04] = DMEM[addr + BES(0x005)] << 8;
VR[vt][05] = DMEM[addr + BES(0x006)] << 8;
VR[vt][06] = DMEM[addr + BES(0x007)] << 8;
addr += BES(0x008);
addr &= 0x00000FFF;
VR[vt][07] = DMEM[addr] << 8;
break;
case 02: /* F3DZEX 2.08J "Doubutsu no Mori" (Animal Forest) CPU CFB */
VR[vt][00] = DMEM[addr + BES(0x002)] << 8;
VR[vt][01] = DMEM[addr + BES(0x003)] << 8;
VR[vt][02] = DMEM[addr + BES(0x004)] << 8;
VR[vt][03] = DMEM[addr + BES(0x005)] << 8;
VR[vt][04] = DMEM[addr + BES(0x006)] << 8;
VR[vt][05] = DMEM[addr + BES(0x007)] << 8;
addr += 0x008;
addr &= 0x00000FFF;
VR[vt][06] = DMEM[addr + BES(0x000)] << 8;
VR[vt][07] = DMEM[addr + BES(0x001)] << 8;
break;
case 03: /* F3DZEX 2.08J "Doubutsu no Mori" (Animal Forest) CPU CFB */
VR[vt][00] = DMEM[addr + BES(0x003)] << 8;
VR[vt][01] = DMEM[addr + BES(0x004)] << 8;
VR[vt][02] = DMEM[addr + BES(0x005)] << 8;
VR[vt][03] = DMEM[addr + BES(0x006)] << 8;
VR[vt][04] = DMEM[addr + BES(0x007)] << 8;
addr += 0x008;
addr &= 0x00000FFF;
VR[vt][05] = DMEM[addr + BES(0x000)] << 8;
VR[vt][06] = DMEM[addr + BES(0x001)] << 8;
VR[vt][07] = DMEM[addr + BES(0x002)] << 8;
break;
case 04: /* "Resident Evil 2" in-game 3-D, F3DLX 2.08--"WWF No Mercy" */
VR[vt][00] = DMEM[addr + BES(0x004)] << 8;
VR[vt][01] = DMEM[addr + BES(0x005)] << 8;
VR[vt][02] = DMEM[addr + BES(0x006)] << 8;
VR[vt][03] = DMEM[addr + BES(0x007)] << 8;
addr += 0x008;
addr &= 0x00000FFF;
VR[vt][04] = DMEM[addr + BES(0x000)] << 8;
VR[vt][05] = DMEM[addr + BES(0x001)] << 8;
VR[vt][06] = DMEM[addr + BES(0x002)] << 8;
VR[vt][07] = DMEM[addr + BES(0x003)] << 8;
break;
case 05: /* F3DZEX 2.08J "Doubutsu no Mori" (Animal Forest) CPU CFB */
VR[vt][00] = DMEM[addr + BES(0x005)] << 8;
VR[vt][01] = DMEM[addr + BES(0x006)] << 8;
VR[vt][02] = DMEM[addr + BES(0x007)] << 8;
addr += 0x008;
addr &= 0x00000FFF;
VR[vt][03] = DMEM[addr + BES(0x000)] << 8;
VR[vt][04] = DMEM[addr + BES(0x001)] << 8;
VR[vt][05] = DMEM[addr + BES(0x002)] << 8;
VR[vt][06] = DMEM[addr + BES(0x003)] << 8;
VR[vt][07] = DMEM[addr + BES(0x004)] << 8;
break;
case 06: /* F3DZEX 2.08J "Doubutsu no Mori" (Animal Forest) CPU CFB */
VR[vt][00] = DMEM[addr + BES(0x006)] << 8;
VR[vt][01] = DMEM[addr + BES(0x007)] << 8;
addr += 0x008;
addr &= 0x00000FFF;
VR[vt][02] = DMEM[addr + BES(0x000)] << 8;
VR[vt][03] = DMEM[addr + BES(0x001)] << 8;
VR[vt][04] = DMEM[addr + BES(0x002)] << 8;
VR[vt][05] = DMEM[addr + BES(0x003)] << 8;
VR[vt][06] = DMEM[addr + BES(0x004)] << 8;
VR[vt][07] = DMEM[addr + BES(0x005)] << 8;
break;
case 07: /* F3DZEX 2.08J "Doubutsu no Mori" (Animal Forest) CPU CFB */
VR[vt][00] = DMEM[addr + BES(0x007)] << 8;
addr += 0x008;
addr &= 0x00000FFF;
VR[vt][01] = DMEM[addr + BES(0x000)] << 8;
VR[vt][02] = DMEM[addr + BES(0x001)] << 8;
VR[vt][03] = DMEM[addr + BES(0x002)] << 8;
VR[vt][04] = DMEM[addr + BES(0x003)] << 8;
VR[vt][05] = DMEM[addr + BES(0x004)] << 8;
VR[vt][06] = DMEM[addr + BES(0x005)] << 8;
VR[vt][07] = DMEM[addr + BES(0x006)] << 8;
break;
}
return;
}
void LUV(unsigned vt, unsigned element, signed offset, unsigned base)
{
register u32 addr;
register unsigned int b;
const unsigned int e = element;
addr = (SR[base] + 8*offset) & 0x00000FFF;
if (e != 0x0) {
addr += (~e + 0x1) & 0xF;
for (b = 0; b < 8; b++) {
VR[vt][b] = DMEM[BES(addr &= 0x00000FFF)] << 7;
addr -= 16 * (e - b - 1 == 0x0);
++addr;
}
return;
} /* "Mia Hamm Soccer 64" SP exception override (zilmar) */
b = addr & 07;
addr &= ~07;
switch (b) {
case 00:
VR[vt][07] = DMEM[addr + BES(0x007)] << 7;
VR[vt][06] = DMEM[addr + BES(0x006)] << 7;
VR[vt][05] = DMEM[addr + BES(0x005)] << 7;
VR[vt][04] = DMEM[addr + BES(0x004)] << 7;
VR[vt][03] = DMEM[addr + BES(0x003)] << 7;
VR[vt][02] = DMEM[addr + BES(0x002)] << 7;
VR[vt][01] = DMEM[addr + BES(0x001)] << 7;
VR[vt][00] = DMEM[addr + BES(0x000)] << 7;
break;
case 01: /* PKMN Puzzle League HVQM decoder */
VR[vt][00] = DMEM[addr + BES(0x001)] << 7;
VR[vt][01] = DMEM[addr + BES(0x002)] << 7;
VR[vt][02] = DMEM[addr + BES(0x003)] << 7;
VR[vt][03] = DMEM[addr + BES(0x004)] << 7;
VR[vt][04] = DMEM[addr + BES(0x005)] << 7;