-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrack_yolov5_counter.py
268 lines (222 loc) · 11.9 KB
/
track_yolov5_counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import sys
sys.path.insert(0, './yolov5')
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from numpy import where
import numpy as np
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
check_img_size, non_max_suppression, apply_classifier, scale_coords,
xyxy2xywh, xywh2xyxy, plot_one_box, strip_optimizer, set_logging)
from utils.torch_utils import select_device, load_classifier, time_synchronized
# deep sort part
from libraries.deep_sort.utils.parser import get_config
from libraries.deep_sort.deep_sort import DeepSort
import glob
# alphapose
from libraries.alphapose.alphapose.utils.config import update_config
from libraries.alphapose.scripts.demo_track_api import SingleImageAlphaPose
# counter
from counter import VoteCounter
def detect(save_img=False):
out, source, weights, view_img, save_txt, imgsz = \
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source.isnumeric() or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize
set_logging()
device = select_device(opt.device)
folder_main = out.split('/')[0]
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
folder_features = folder_main+'/features'
if os.path.exists(folder_features):
shutil.rmtree(folder_features) # delete features output folder
folder_crops = folder_main+'/image_crops'
if os.path.exists(folder_crops):
shutil.rmtree(folder_crops) # delete output folder with object crops
os.makedirs(out) # make new output folder
os.makedirs(folder_features) # make new output folder
os.makedirs(folder_crops) # make new output folder
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# frames per second
fps = dataset.cap.get(cv2.CAP_PROP_FPS)
critical_time_frames = opt.time*fps
# COUNTER: initialization
counter = VoteCounter(critical_time_frames, fps)
print('CRITICAL TIME IS ', opt.time, 'sec, or ', counter.critical_time, ' frames')
# Find index corresponding to a person
idx_person = names.index("person")
# Deep SORT: initialize the tracker
cfg = get_config()
cfg.merge_from_file(opt.config_deepsort)
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
# AlphaPose: initialization
args_p = update_config(opt.config_alphapose)
cfg_p = update_config(args_p.ALPHAPOSE.cfg)
args_p.ALPHAPOSE.tracking = args_p.ALPHAPOSE.pose_track or args_p.ALPHAPOSE.pose_flow
demo = SingleImageAlphaPose(args_p.ALPHAPOSE, cfg_p, device)
output_pose = opt.output.split('/')[0] + '/pose'
if not os.path.exists(output_pose):
os.mkdir(output_pose)
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# COUNTER: compute urn centoid (1st frame only) and plot a bounding box around it
if dataset.frame == 1:
counter.read_urn_coordinates(opt.urn, im0s, opt.radius)
counter.plot_urn_bbox(im0s)
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Deep SORT: person class only
idxs_ppl = (det[:,-1] == idx_person).nonzero(as_tuple=False).squeeze(dim=1) # 1. List of indices with 'person' class detections
dets_ppl = det[idxs_ppl,:-1] # 2. Torch.tensor with 'person' detections
print('\n {} people were detected!'.format(len(idxs_ppl)))
# Deep SORT: convert data into a proper format
xywhs = xyxy2xywh(dets_ppl[:,:-1]).to("cpu")
confs = dets_ppl[:,4].to("cpu")
# Deep SORT: feed detections to the tracker
if len(dets_ppl) != 0:
trackers, features = deepsort.update(xywhs, confs, im0)
# tracks inside a critical sphere
trackers_inside = []
for i, d in enumerate(trackers):
plot_one_box(d[:-1], im0, label='ID'+str(int(d[-1])), color=colors[1], line_thickness=1)
# COUNTER
d_include = counter.centroid_distance(d, im0, colors[1], dataset.frame)
if d_include:
trackers_inside.append(d)
# ALPHAPOSE: show skeletons for bounding boxes inside the critical sphere
if len(trackers_inside) > 0:
pose = demo.process('frame_'+str(dataset.frame), im0, trackers_inside)
im0 = demo.vis(im0, pose)
demo.writeJson([pose], output_pose, form=args_p.ALPHAPOSE.format, for_eval=args_p.ALPHAPOSE.eval)
counter.save_features_and_crops(im0, dataset.frame, trackers_inside, features, folder_main)
cv2.putText(im0,'Voted '+str(len(counter.voters_count)), (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 2)
print('NUM VOTERS', len(counter.voters))
print(list(counter.voters.keys()))
# COUNTER
if len(counter.voters) > 0:
counter.save_voter_trajectory(dataset.frame, folder_main)
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % Path(out))
if platform.system() == 'Darwin' and not opt.update: # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument("--config_deepsort", type=str, default="deep_sort/configs/deep_sort.yaml")
parser.add_argument("--config_alphapose", type=str, default="libraries/alphapose/configs/alphapose.yaml")
parser.add_argument('--radius', type=float, default=1.1, help='critical radius between urn and person in urn radius units')
parser.add_argument('--time', type=float, default=2, help='critical time (in seconds) a person spends inside the critical sphere')
parser.add_argument('--urn', type=str, default='labels/election_2018_sample_1_0000001000.txt', help='path to txt file with urn coordinates')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()