-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathvsp_control-edge_script.py
157 lines (109 loc) · 6.77 KB
/
vsp_control-edge_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
from pipelines.inverted_ve_pipeline import STYLE_DESCRIPTION_DICT, create_image_grid
import os
from pipelines.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
import argparse
from diffusers import AutoencoderKL
from diffusers import ControlNetModel
from utils import parse_config, load_config, memory_efficient, get_canny_edge_array, init_latent
parser = argparse.ArgumentParser()
parser.add_argument('--style', type=str, default='fire')
parser.add_argument('--controlnet_scale', type=float, default=0.5)
parser.add_argument('--canny_img_path', type=str, default='assets/edge_dir')
parser.add_argument('--canny_threshold1', type=int, default=100)
parser.add_argument('--canny_threshold2', type=int, default=200)
args = parser.parse_args()
if __name__ == "__main__":
# load pre_saved_json
config_path = os.path.join("./config", "{}.json".format(args.style))
config = parse_config(config_path)
result_dir = 'results'
if not os.path.exists(result_dir):
os.makedirs(result_dir)
ref_dir = "./assets/ref" # generated images
if not os.path.exists(ref_dir):
os.makedirs(ref_dir)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cpu':
torch_dtype = torch.float32
else:
torch_dtype = torch.float16
# load config
activate_layer_indices_list, activate_step_indices_list,\
ref_seeds, inf_seeds,\
attn_map_save_steps, precomputed_path, guidance_scale, use_inf_negative_prompt,\
style_name_list, ref_object_list, inf_object_list, ref_with_style_description, inf_with_style_description,\
use_shared_attention, adain_queries, adain_keys, adain_values, use_advanced_sampling\
= load_config(config) # load config
controlnet_scale = args.controlnet_scale
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch_dtype)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet, vae=vae,
torch_dtype=torch_dtype)
print('controlnet')
memory_efficient(controlnet, device)
print('vae')
memory_efficient(vae, device)
print('SDXL')
memory_efficient(pipe, device)
# get canny edge array
canny_image_list = get_canny_edge_array(args.canny_img_path, args.canny_threshold1, args.canny_threshold2)
canny_image_name_list = os.listdir(args.canny_img_path)
for c_i, canny_image in enumerate(canny_image_list):
canny_image_name_wo_ext = canny_image_name_list[c_i].split(".")[0]
for ref_object in ref_object_list:
for inf_object in inf_object_list:
for style_name in style_name_list:
style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], STYLE_DESCRIPTION_DICT[style_name][1]
if ref_with_style_description:
ref_prompt = style_description_pos.replace("{object}",ref_object)
else:
ref_prompt = ref_object
if inf_with_style_description:
inf_prompt = style_description_pos.replace("{object}",inf_object)
else:
inf_prompt = inf_object
for activate_layer_indices in activate_layer_indices_list:
for activate_step_indices in activate_step_indices_list:
str_activate_layer, str_activate_step = pipe.activate_layer(
activate_layer_indices=activate_layer_indices,
attn_map_save_steps=attn_map_save_steps,
activate_step_indices=activate_step_indices,
use_shared_attention=use_shared_attention,
adain_queries=adain_queries,
adain_keys=adain_keys,
adain_values=adain_values,
)
for ref_seed in ref_seeds:
# ref_latent = pipe.get_init_latent(precomputed_path,ref_seed)
ref_latent = init_latent(pipe, device_name=device, dtype=torch_dtype, seed=ref_seed)
latents = [ref_latent]
for inf_seed in inf_seeds:
# latents.append(pipe.get_init_latent(precomputed_path, inf_seed))
inf_latent = init_latent(pipe, device_name=device, dtype=torch_dtype, seed=inf_seed)
latents.append(inf_latent)
latents = torch.cat(latents, dim=0)
latents.to(device)
images = pipe.generated_ve_inference(
prompt=ref_prompt,
negative_prompt = style_description_neg,
guidance_scale = guidance_scale,
controlnet_conditioning_scale=controlnet_scale,
latents=latents,
num_images_per_prompt = len(inf_seeds)+1,
target_prompt = inf_prompt,
image=canny_image,
use_inf_negative_prompt = use_inf_negative_prompt,
use_advanced_sampling=use_advanced_sampling
)[0]
ref_image = images[0]
ref_image.save(os.path.join(ref_dir, f"ref_{style_name}_{ref_object}.png"))
#make grid
grid = create_image_grid(images, 1, len(inf_seeds)+1)
new_inf_seeds = [ inf_seed for inf_seed in inf_seeds]
str_controlnet_scale = str(controlnet_scale).replace(".","_")
save_name = f"canny_{canny_image_name_wo_ext}_control-scale_{str_controlnet_scale}_style_{style_name}_ref_{ref_seed}_{ref_object}_inf_{new_inf_seeds}_{inf_object}activate_layer_{str_activate_layer}_step_{str_activate_step}.png"
save_path = os.path.join(result_dir, save_name)
grid.save(save_path)
print("saved to ", save_path)