-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathvsp_script.py
130 lines (87 loc) · 5.46 KB
/
vsp_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
from pipelines.inverted_ve_pipeline import STYLE_DESCRIPTION_DICT, create_image_grid
import os
from pipelines.pipeline_stable_diffusion_xl import StableDiffusionXLPipeline
import argparse
from utils import parse_config, memory_efficient, init_latent, load_config
parser = argparse.ArgumentParser()
parser.add_argument('--style', type=str, default='fire')
args = parser.parse_args()
if __name__ == "__main__":
# load pre_saved_json
config_path = os.path.join("./config", "{}.json".format(args.style))
config = parse_config(config_path)
result_dir = 'results'
if not os.path.exists(result_dir):
os.makedirs(result_dir)
ref_dir = "./assets/ref" # generated images
if not os.path.exists(ref_dir):
os.makedirs(ref_dir)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cpu':
torch_dtype = torch.float32
else:
torch_dtype = torch.float16
# load config
activate_layer_indices_list, activate_step_indices_list,\
ref_seeds, inf_seeds,\
attn_map_save_steps, precomputed_path, guidance_scale, use_inf_negative_prompt,\
style_name_list, ref_object_list, inf_object_list, ref_with_style_description, inf_with_style_description,\
use_shared_attention, adain_queries, adain_keys, adain_values, use_advanced_sampling\
= load_config(config) # load config
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch_dtype)
print('SDXL')
memory_efficient(pipe, device)
for ref_object in ref_object_list:
for inf_object in inf_object_list:
for style_name in style_name_list:
style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], STYLE_DESCRIPTION_DICT[style_name][1]
if ref_with_style_description:
ref_prompt = style_description_pos.replace("{object}",ref_object)
else:
ref_prompt = ref_object
if inf_with_style_description:
inf_prompt = style_description_pos.replace("{object}",inf_object)
else:
inf_prompt = inf_object
for activate_layer_indices in activate_layer_indices_list:
for activate_step_indices in activate_step_indices_list:
str_activate_layer, str_activate_step = pipe.activate_layer(activate_layer_indices=activate_layer_indices,
attn_map_save_steps=attn_map_save_steps,
activate_step_indices=activate_step_indices,
use_shared_attention=use_shared_attention,
adain_queries=adain_queries,
adain_keys=adain_keys,
adain_values=adain_values,
)
for ref_seed in ref_seeds:
# ref_latent = pipe.get_init_latent(precomputed_path,ref_seed)
ref_latent = init_latent(pipe, device_name=device, dtype=torch_dtype, seed=ref_seed)
latents = [ref_latent]
for inf_seed in inf_seeds:
# latents.append(pipe.get_init_latent(precomputed_path, inf_seed))
inf_latent = init_latent(pipe, device_name=device, dtype=torch_dtype, seed=inf_seed)
latents.append(inf_latent)
latents = torch.cat(latents, dim=0)
latents.to(device)
images = pipe(
prompt=ref_prompt,
negative_prompt = style_description_neg,
guidance_scale = guidance_scale,
latents=latents,
num_images_per_prompt = len(inf_seeds)+1,
target_prompt = inf_prompt,
use_inf_negative_prompt = use_inf_negative_prompt,
use_advanced_sampling=use_advanced_sampling
)[0]
ref_image = images[0]
ref_image.save(os.path.join(ref_dir, f"ref_{style_name}_{ref_object}.png"))
#make grid
n_row = 1
n_col = len(inf_seeds)+1
grid = create_image_grid(images, n_row, n_col)
new_inf_seeds = [inf_seed for inf_seed in inf_seeds]
save_name = f"style_{style_name}_ref_{ref_seed}_{ref_object}_inf_{new_inf_seeds}_{inf_object}activate_layer_{str_activate_layer}_step_{str_activate_step}.png"
save_path = os.path.join(result_dir, save_name)
grid.save(save_path)
print("saved to ", save_path)