-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransforms.py
103 lines (83 loc) · 3.5 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import numpy as np
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
class ColorJitter(object):
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
self.color_jitter = T.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)
def __call__(self, image, target):
image = self.color_jitter(image)
return image, target
class RandomHorizontalFlip(object):
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, image, target):
if np.random.rand() < self.prob:
image = F.hflip(image)
if isinstance(target, list):
target_new = []
for _target in target:
target_new.append(F.hflip(_target))
target = target_new
else:
target = F.hflip(target)
return image, target
class RandomResizedCrop(object):
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.)):
self.size = size
self.scale = scale
self.ratio = ratio
def __call__(self, image, target):
i, j, h, w = T.RandomResizedCrop.get_params(image, scale=self.scale, ratio=self.ratio)
image = F.resized_crop(image, i, j, h, w, self.size)
if isinstance(target, list):
target_new = []
for _target in target:
target_new.append(F.resized_crop(_target, i, j, h, w, self.size, interpolation=F.InterpolationMode.NEAREST))
target = target_new
else:
target = F.resized_crop(target, i, j, h, w, self.size, interpolation=F.InterpolationMode.NEAREST)
return image, target
class Resize(object):
def __init__(self, h, w, eval_mode=False):
self.h = h
self.w = w
self.eval_mode = eval_mode
def __call__(self, image, target):
image = F.resize(image, (self.h, self.w))
# If size is a sequence like (h, w), the output size will be matched to this.
# If size is an int, the smaller edge of the image will be matched to this number maintaining the aspect ratio
if not self.eval_mode:
if isinstance(target, list):
target_new = []
for _target in target:
target_new.append(F.resize(_target, (self.h, self.w), interpolation=F.InterpolationMode.NEAREST))
target = target_new
else:
target = F.resize(target, (self.h, self.w), interpolation=F.InterpolationMode.NEAREST)
return image, target
class ToTensor(object):
def __call__(self, image, target):
image = F.to_tensor(image)
if isinstance(target, list):
target_new = []
for _target in target:
target_new.append(torch.as_tensor(np.asarray(_target).copy(), dtype=torch.int64))
target = target_new
else:
target = torch.as_tensor(np.asarray(target).copy(), dtype=torch.int64)
return image, target
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image, target):
image = F.normalize(image, mean=self.mean, std=self.std)
return image, target