-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_final_metrics.py
237 lines (178 loc) · 8.02 KB
/
compute_final_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
'''
Adapted from https://github.com/naver/oasis/blob/master/main_adapt.py
'''
import sys
import os
import glob
import matplotlib.pyplot as plt
import random
import json
import copy
import argparse
import copy
import pickle
from scipy.io import loadmat
import torch
import torch.nn as nn
from torch.utils import data, model_zoo
from torch.autograd import Variable
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
# ours
from dataset.cityscapes_dataset import Cityscapes
from dataset.acdc_dataset import ACDC
from dataset.idd_dataset import IDD
from metrics_helpers import *
from image_helpers import ImageOps
from uncertainty_helpers import UncertaintyOps
from path_dicts import *
class SolverOps:
def __init__(self, args):
self.args = args
# this is taken from the AdaptSegnet repo
with open('./dataset/cityscapes_list/info.json', 'r') as f:
cityscapes_info = json.load(f)
self.args.num_classes = 19
self.args.name_classes = cityscapes_info['label']
print(f'Number of classes: {self.args.num_classes}')
self.image_ops = ImageOps()
self.uncertainty_ops = UncertaintyOps()
w_trg, h_trg = map(int, self.args.input_size.split(','))
self.input_size = (w_trg, h_trg)
def compute_final_metrics(self):
"""
Method to compute final metrics on all predictions/gts
Note: different from the ones computed at eval, since they
are sample by sample -- here we use all dataset at once.
This is the standard way of proceeding in sem.segm. research.
"""
# label and pred paths
gt_imgs, pred_imgs = self.retrieve_paired_preds_and_labels_paths()
assert (len(gt_imgs) == len(pred_imgs))
print('Computing datasets\'s mIoU')
miou_all = compute_mIoU_fromlist(
gt_imgs=gt_imgs, pred_imgs=pred_imgs, args=self.args)
print('Computing dataset\'s accuracy')
pixel_acc_all, mean_acc_all = compute_acc_fromlist(
gt_imgs=gt_imgs, pred_imgs=pred_imgs, args=self.args)
summary_dict = {
'pixel_acc_final': pixel_acc_all,
'mean_acc_final': mean_acc_all,
'miou_final': miou_all
}
print('Dumping final summary_dict')
with open(self.args.results_file, 'wb') as f:
pickle.dump(summary_dict, f, pickle.HIGHEST_PROTOCOL)
def retrieve_paired_preds_and_labels_paths(self):
"""
Method to retrieve the paths to predicted images based on the condition and scene list.
"""
scene_list = self.args.scene.split(',')
cond_list = self.args.cond.split(',')
method_sub_folder = f'uncertainty_{self.args.uncertainty_method}'
model_arch_sub_folder = self.args.model_arch
# Unsorted all labels list
all_labels = self.trg_parent_set.annotation_path_list
# Sorted (paired) preds and labels lists
pred_imgs_list = []
label_list = []
for scene, cond in zip(scene_list, cond_list):
trg_sub_folder = f'{self.args.trg_dataset}_{scene}_{cond}'
self.model_dir = os.path.join(
self.args.root_exp_dir, self.args.src_dataset,
model_arch_sub_folder, trg_sub_folder, method_sub_folder)
self.output_images_dir = os.path.join(
self.model_dir, 'output_images')
if cond == 'clean':
cond = ''
scene = f'/{scene}/'
pred_imgs = sorted(glob.glob(os.path.join(self.output_images_dir, '*_label.png')))
labels = sorted([x for x in all_labels if (scene in x and cond in x)])
pred_imgs_list += pred_imgs
label_list += labels
return label_list, pred_imgs_list
def setup_target_data_loader(self):
"""
Method to create pytorch dataloaders for the
target domain selected by the user
"""
# (can also be a single environment)
scene_list = self.args.scene.split(',')
cond_list = self.args.cond.split(',')
if self.args.trg_dataset=='Cityscapes':
self.trg_parent_set = Cityscapes(
CITYSCAPES_ROOT,
scene_list, cond_list)
elif self.args.trg_dataset=='ACDC':
self.trg_parent_set = ACDC(
ACDC_ROOT, scene_list, cond_list,
batch_size=self.args.batch_size)
elif self.args.trg_dataset=='IDD':
self.trg_parent_set = IDD(
IDD_ROOT, scene_list, batch_size=self.args.batch_size)
else:
raise ValueError(f'Unknown dataset {self.args.dataset}')
if __name__ == '__main__':
# Parse all the arguments provided from the CLI.
parser = argparse.ArgumentParser()
# What uncertainty to compute
parser.add_argument("--uncertainty_method", type=str, default='entropy',
help="available options for uncertainty : entropy")
# Main experiment parameters
parser.add_argument("--model_arch", type=str, default='SegFormer-B0',
help="""Architecture name, see path_dicts.py
""")
parser.add_argument("--src_dataset", type=str, default='Cityscapes',
help="Which source dataset to start from {Cityscapes}")
parser.add_argument("--batch_size", type=int, default=1,
help="Number of images sent to the network in one step.")
parser.add_argument("--num_workers", type=int, default=4,
help="number of workers for multithread dataloading.")
parser.add_argument("--seed", type=int, default=111,
help="Random seed to have reproducible results.")
parser.add_argument("--root_exp_dir", type=str, default='results/',
help="Where to save predictions.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
parser.add_argument("--force_redo", type=int, default=0,
help="Whether to re-run even if there is a DONE file in folder")
parser.add_argument("--results_dir", type=str, default='results/debug/final_metrics/',
help="Path where to save the results file")
# For target
parser.add_argument("--trg_dataset", type=str, default='Cityscapes',
help="Which target dataset to transfer to")
parser.add_argument("--scene", type=str, default='aachen',
help="List of scenes comma separated, e.g. 'aachen, frankfurt'.")
parser.add_argument("--cond", type=str, default='clean',
help="List of conditions comma separated, e.g. 'clean, fog, rain'.")
args = parser.parse_args()
args.force_redo = bool(args.force_redo)
if not os.path.exists(args.results_dir):
os.makedirs(args.results_dir)
args.results_file = os.path.join(args.results_dir, 'results.pkl')
if os.path.exists(args.results_file):
if args.force_redo:
print(f'File {args.results_file} already exists! Overwriting it.')
else:
raise ValueError(f'File {args.results_file} already exists! Stopping here!')
# Full original image sizes
if 'Cityscapes' in args.trg_dataset:
args.input_size = '2048,1024'
elif 'ACDC' in args.trg_dataset:
args.input_size = '1920,1080'
elif 'IDD' in args.trg_dataset:
args.input_size = '1280,720'
else:
raise NotImplementedError("Input size unknown")
npr.seed(args.seed)
solver_ops = SolverOps(args)
print('Setting up data target loader')
solver_ops.setup_target_data_loader()
print('Computing final metrics')
solver_ops.compute_final_metrics()