-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lts_network.py
342 lines (262 loc) · 14.3 KB
/
train_lts_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
''' Adapted from https://github.com/uncbiag/LTS/blob/main/code/Tiramisu_calibration.py'''
import sys
import os
import glob
import matplotlib.pyplot as plt
import random
import json
import copy
import argparse
import copy
import pickle
from scipy.io import loadmat
import logging
import datetime
import torch
import torch.nn as nn
from torch.utils import data
from torch.autograd import Variable
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
from PIL import Image
from lts_network import TemperatureModel
from dataset.dataset_mixed import MixedDatasets
# For mmseg models
from mmsegmentation.mmseg.apis import init_segmentor, inference_segmentor
from path_dicts import *
class SolverOps:
def __init__(self, args):
self.args = args
self.args.num_classes = 19
w_trg, h_trg = map(int, self.args.input_size.split(','))
self.input_size = (w_trg, h_trg)
self.initiate_logger()
# Save arguments
self.logger.info(self.args)
def optimize_temperature(self):
"""
Method to optimize temperatures for a model.
All parameters setup by the user (args).
"""
self.logger.info('Start training calib model')
cudnn.enabled = True
cudnn.deterministic = True
nll_criterion = nn.CrossEntropyLoss(ignore_index=255).cuda()
self.logger.info("Computing Loss")
mean_val_loss = 0
with torch.no_grad():
for _, labels, image_path in self.val_loader:
labels = labels.long().cuda()
logits = inference_segmentor(self.model, image_path[0], output_logits=True, pre_softmax=True)
mean_val_loss += nll_criterion(logits, labels).item()
mean_val_loss = mean_val_loss/len(self.val_loader)
self.logger.info(f'Initial val loss: {mean_val_loss}')
# Training settings
max_epochs = self.args.epochs
batch_size = self.args.batch_size
lr = self.args.lr
num_images = len(self.train_loader)
# Calibration model
temp_model = TemperatureModel(self.args.num_classes)
temp_model.cuda()
temp_model.weights_init()
temp_model.train()
optimizer = optim.Adam(temp_model.parameters(), lr=lr)
optimizer.zero_grad()
best_model = copy.deepcopy(temp_model)
mean_val_loss = 1e6 # Initialize loss very high so first val iteration will surely become best model.
idle_iteration_counter = 0
self.logger.info("Begin training")
for epoch in range(max_epochs):
for i_iter, (image, labels, image_path) in enumerate(self.train_loader):
with torch.no_grad():
logits = inference_segmentor(self.model, image_path[0], output_logits=True, pre_softmax=True)
image = image.cuda()
labels = labels.long().cuda()
scaled_logits = temp_model(logits, image)
loss = nll_criterion(scaled_logits, labels)
loss.backward()
# Accumulate images in batches to do the weight update
if ((i_iter + 1) % batch_size == 0) or (i_iter + 1 == num_images):
optimizer.step()
optimizer.zero_grad()
## save the current best model
if (i_iter + 1) % (10 * batch_size) == 0 or (i_iter + 1 == num_images):
temp_model.eval()
with torch.no_grad():
tmp_loss = 0
for image, labels, image_path in self.val_loader:
labels = labels.long().cuda()
image = image.cuda()
logits = inference_segmentor(self.model, image_path[0], output_logits=True, pre_softmax=True)
scaled_logits = temp_model(logits, image)
tmp_loss += nll_criterion(scaled_logits, labels).item()
mean_tmp_loss = tmp_loss/len(self.val_loader)
self.logger.info(f'Epoch: {epoch} - iter: {i_iter // batch_size} - NLL: {mean_tmp_loss}')
if mean_tmp_loss < mean_val_loss:
mean_val_loss = mean_tmp_loss
self.logger.info('%d epoch, %d iteration current lowest - NLL: %.5f' % (epoch, i_iter // batch_size, mean_val_loss))
best_model = copy.deepcopy(temp_model)
# Reset idle iteration counter
idle_iteration_counter = 0
else:
idle_iteration_counter += 1
# Break computations because val NLL has not improved for a whole epoch
if num_images > 10*batch_size:
images_per_iter = 10*batch_size
else:
images_per_iter = num_images
if idle_iteration_counter > 3*num_images/images_per_iter:
torch.save(best_model.state_dict(),
os.path.join(self.args.results_dir,
'best_temperature_model_state_dict.pth'))
np.save(os.path.join(self.args.results_dir, 'best_nll.npy'),
mean_val_loss)
self.logger.info('End of calibration. Early stopping')
# Save also final model
torch.save(temp_model.state_dict(),
os.path.join(self.args.results_dir,
'final_temperature_model_state_dict.pth'))
np.save(os.path.join(self.args.results_dir, 'final_nll.npy'),
mean_tmp_loss)
self.logger.info('End of calibration. Early stopping')
with open(os.path.join(self.args.results_dir, self.args.DONE_name),'wb') as f:
self.logger.info('Saving end of training file')
exit(0)
temp_model.train()
torch.save(best_model.state_dict(), os.path.join(self.args.results_dir, 'best_temperature_model_state_dict.pth'))
np.save(os.path.join(self.args.results_dir, 'best_nll.npy'), mean_val_loss)
# Save final model
torch.save(temp_model.state_dict(), os.path.join(self.args.results_dir, 'final_temperature_model_state_dict.pth'))
np.save(os.path.join(self.args.results_dir, 'final_nll.npy'), mean_tmp_loss)
self.logger.info('End of calibration.')
with open(os.path.join(self.args.results_dir, self.args.DONE_name),'wb') as f:
self.logger.info('Saving end of training file')
def build_model(self):
# Create network
config = mmseg_models_configs[self.args.model_arch]
checkpoint = mmseg_models_checkpoints[self.args.model_arch]
from mmsegmentation.mmseg.apis import init_segmentor, inference_segmentor
# Create network
config = mmseg_models_configs[self.args.model_arch]
checkpoint = mmseg_models_checkpoints[self.args.model_arch]
self.model = init_segmentor(config, checkpoint,
device=f'cuda:{self.args.gpu}')
# Set model decoder to provide features
self.model.decode_head.provide_features = True
# Set up config of the model to process the dataset
self.model.cfg.test_pipeline = [
{'type': 'LoadImageFromFile'},
{'type': 'MultiScaleFlipAug',
'img_scale': (self.input_size[0], self.input_size[1]),
'flip': False,
'transforms': [
{'type': 'Resize', 'keep_ratio': True},
{'type': 'RandomFlip'},
{'type': 'Normalize',
'mean': [123.675, 116.28, 103.53], # TODO: Should we adapt it to target dsets?
'std': [58.395, 57.12, 57.375],
'to_rgb': True},
{'type': 'ImageToTensor', 'keys': ['img']},
{'type': 'Collect', 'keys': ['img']}
]
}
]
print('Done')
def setup_target_data_loader(self):
"""
Method to create pytorch dataloaders for the
target domain selected by the user
"""
self.logger.info('Setting up data target loader')
scene_list = self.args.scene.split(',')
cond_list = self.args.cond.split(',')
dset_list = self.args.trg_dataset_list.split(',')
full_dataset = MixedDatasets(scene_list, cond_list, dset_list)
train_set, val_set = full_dataset.random_split_train_test(percentage_val=self.args.percentage_val,
total_images=self.args.total_images)
self.val_loader = data.DataLoader(
val_set, batch_size=1,
shuffle=True, pin_memory=True)
self.train_loader = data.DataLoader(
train_set, batch_size=1,
shuffle=True, pin_memory=True)
@staticmethod
def pad_str(msg, total_len=70):
rem_len = total_len - len(msg)
return '*'*int(rem_len/2) + msg + '*'*int(rem_len/2)\
def initiate_logger(self):
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.addHandler(logging.FileHandler(os.path.join(self.args.results_dir, 'log.txt'),'w'))
logger.info(self.pad_str(' LOGISTICS '))
logger.info('Experiment Date: {}'.format(datetime.datetime.now().strftime('%Y-%m-%d %H:%M')))
logger.info('Output Name: {}'.format(self.args.results_dir))
logger.info('User: {}'.format(os.getenv('USER')))
self.logger = logger
if __name__ == '__main__':
# Parse all the arguments provided from the CLI.
parser = argparse.ArgumentParser()
# main experiment parameters
parser.add_argument("--model_arch", type=str, default='SegFormer-B0',
help="Architecture name, see path_dicts.py")
parser.add_argument("--src_dataset", type=str, default='Cityscapes',
help="Which source dataset to start from {Cityscapes}")
parser.add_argument("--num_workers", type=int, default=4,
help="number of workers for multithread dataloading.")
parser.add_argument("--seed", type=int, default=111,
help="Random seed to have reproducible results.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
parser.add_argument("--force_redo", type=int, default=0,
help="Whether to re-run even if there is a DONE file in folder")
parser.add_argument("--epochs", type=int, default=10,
help="Number of epochs.")
parser.add_argument("--lr", type=float, default=1e-4,
help="Learning Rate.")
parser.add_argument("--batch_size", type=int, default=4,
help="Number of images sent to the network in one step.")
parser.add_argument("--total_images", type=int, default=500,
help="Max number of total images used to train the calib network.")
parser.add_argument("--percentage_val", type=int, default=0.2,
help="Percentage of images used for validation.")
# for target
parser.add_argument("--trg_dataset", type=str, default='Cityscapes',
help="Which target dataset to transfer to {Cityscapes, IDD, ACDC}")
parser.add_argument("--trg_dataset_list", type=str, default='Cityscapes',
help="List of target datasets, one per cond and scene.")
parser.add_argument("--scene", type=str, default='frankfurt',
help="Scene, depends on specific datasets")
parser.add_argument("--cond", type=str, default='clean',
help="Condition, depends on specific datasets")
parser.add_argument("--results_dir", type=str, default='results/debug/model_temp_scaling/',
help="Where to save predictions.")
args = parser.parse_args()
args.force_redo = bool(args.force_redo)
npr.seed(args.seed)
if not os.path.exists(args.results_dir):
os.makedirs(args.results_dir)
args.DONE_name = f'experiment.DONE'
# Full original image sizes
if 'Cityscapes' in args.trg_dataset:
args.input_size = '2048,1024'
elif 'ACDC' in args.trg_dataset:
args.input_size = '1920,1080'
elif 'IDD' in args.trg_dataset:
args.input_size = '1280,720'
elif 'All' in args.trg_dataset: # If dataset is mixed use CS image size by default
args.input_size = '2048,1024'
else:
raise NotImplementedError("Input size unknown")
# check if experiment/testing was done already
if os.path.isfile(os.path.join(args.results_dir, args.DONE_name)) and not args.force_redo:
print('DONE file present -- evaluation has already been carried out')
print(os.path.join(args.results_dir, args.DONE_name))
exit(0)
solver_ops = SolverOps(args)
solver_ops.setup_target_data_loader()
solver_ops.build_model()
solver_ops.optimize_temperature()