forked from ncclab-sustech/MOVEA
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
132 lines (112 loc) · 3.91 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import geatpy as ea
import sys
import os
import argparse
from public import glo
import numpy as np
NUM_ELE = glo.NUM_ELE
def argdet():
if len(sys.argv) <= 9:
args = myargs()
return args
else:
print('Cannot recognize the inputs!')
print("-i data -opt optimizer -dim dimension")
exit()
def myargs():
parser = argparse.ArgumentParser()
parser.add_argument('--type', '-t', default="ti", help='stimulation method')
parser.add_argument('--position', '-p', default='hippo', help='target location')
parser.add_argument('--head', '-m', default='ernie', help='head model name')
parser.add_argument('--gen', '-g', default= 0 , help='max epochs')
#parser.add_argument('--input', '-o', default= os.path.abspath(os.path.dirname(__file__))+'/data' , help='input path')
#parser.add_argument('--output', '-o', default= os.path.abspath(os.path.dirname(__file__)) , help='output path')
args = parser.parse_args()
parser.add_argument('--name', '-n', default= args.type + "_" + args.position + "_" + args.head , help='output name')
args = parser.parse_args()
return args
print("start")
args = argdet()
glo.head_model = args.head
glo.type = args.type
glo.name = args.position
if args.position == 'hippo':
glo.position = np.array([-31, -20, -14])
elif args.position == 'pallidum':
glo.position = np.array([-17, 3, -1])
elif args.position == 'thalamus':
glo.position = np.array([10, -19, 6])
elif args.position == 'sensory':
glo.position = [41,-36,66]
elif args.position == 'dorsal':
glo.position = [25,42,37]
elif args.position == 'v1':
glo.position = np.array([10,-92,2])
elif args.position == 'dlpfc':
glo.position = np.array([-39, 34, 37])
elif args.position == 'motor':
glo.position = np.array([47, -13, 52])
else:
print("coordinate")
glo.position = np.array(args.position)
if args.type == 'ti':
from ti_problem import MyProblem
problem = MyProblem()
elif args.type == 'mti':
from tdcs_problem import MyProblem
problem = MyProblem()
elif args.type == 'tdcs':
from tdcs_problem import MyProblem
problem = MyProblem()
else:
print('ERROR: STIMULATION TYPE')
gen = 50
if int(args.gen) != 0:
gen = int(args.gen)
algorithm = ea.soea_SEGA_templet(
problem,
ea.Population(Encoding='RI', NIND=30),
MAXGEN=gen, # iteration
logTras=1, # print log per logTras epoch ,0 means not。
#trappedValue=1e-2, # early stopping parameter
maxTrappedCount=10)
algorithm.mutOper.F = 0.5
algorithm.recOper.XOVR = 0.2
res = ea.optimize(algorithm,
verbose=True,
drawing=10,
outputMsg=False,
drawLog=False,
saveFlag=False)
print(res)
prior = np.array(res['Vars'][0])
glo.prior = prior
from Mopso import *
from public import P_objective
particals = 100 # size of population
cycle_ = 100 # iteration2
mesh_div = 10 # grid parameter
thresh = 100 # size of archive
Problem = "TES"
M = 2 # number of obejctive
print("init")
_, Boundary, _ = P_objective.P_objective("init", Problem, M, particals)
max_ = Boundary[0]
min_ = Boundary[1]
print("start")
mopso_ = Mopso(particals, max_, min_, thresh, mesh_div)
pareto_in, pareto_fitness = mopso_.done(cycle_)
path_fitness = "./output/pareto_fitness_" + args.name + ".txt"
path_in = "./output/pareto_in_" + args.name + ".txt"
if args.type == 'ti':
fp = open(path_in,'w+')
for solution in (pareto_in):
result = ' '.join([str(elem) for elem in [int(round(solution[2] * (NUM_ELE-1))),2 * solution[0],int(round(solution[3] * (NUM_ELE-1))),-2 * solution[0],int(round(solution[4] * (NUM_ELE-1))),2 * solution[1],int(round(solution[5] * (NUM_ELE-1))),-2 * solution[1]]])
fp.write(result)
fp.close()
else:
np.savetxt(path_in, pareto_in)
np.savetxt(path_fitness, pareto_fitness)
print("\n", "pareto_position:" + path_in)
print("pareto_value:" + path_fitness)
print("\n,over")