This repository has been archived by the owner on Mar 22, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 44
/
neptune.yaml
80 lines (67 loc) · 1.59 KB
/
neptune.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
project: shared/showroom
name: tgs_salt_identification_challenge
tags: [solution-10]
parameters:
# Data Paths
train_images_dir: data/raw/train
test_images_dir: data/raw/test
metadata_filepath: data/meta/metadata.csv
depths_filepath: data/meta/depths.csv
auxiliary_metadata_filepath: data/meta/auxiliary_metadata.csv
stacking_data_dir: data/stacking_data
# Execution
overwrite: 0
num_workers: 4
num_threads: 4
kaggle_message: 'solution-10'
image_source: disk
pin_memory: 1
loader_mode: resize_and_pad
target_format: 'png'
pad_method: edge
resize_target_size: 102
pad_size: 13
dev_mode_size: 100
n_cv_splits: 6
shuffle: 1
# General parameters
image_h: 128
image_w: 128
image_channels: 3
# U-Net parameters
network_output_channels: 2
network_activation: 'sigmoid'
architecture: UNetResNet # choose an option from models.ARCHITECTURES for example, EmptinessClassifier
fine_tuning: 0
# U-Net from scratch parameters
nr_network_outputs: 1
n_filters: 16
conv_kernel: 3
pool_kernel: 3
pool_stride: 2
repeat_blocks: 4
# Loss
# Training schedule
epochs_nr: 10000
batch_size_train: 24
batch_size_inference: 24
lr: 0.0001
momentum: 0.9
patience: 20
validation_metric_name: 'iout'
minimize_validation_metric: 0
# Exponential LR scheduler
gamma: 0.95
# Reduce LR on plateau
reduce_factor: 0.1
reduce_patience: 10
min_lr: 1e-7
# Regularization
use_batch_norm: 1
l2_reg_conv: 0.0001
l2_reg_dense: 0.0
dropout_conv: 0.0
dropout_dense: 0.0
# Postprocessing
threshold_masks: 0.5
tta_aggregation_method: mean