-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_scholar.py
executable file
·794 lines (658 loc) · 35.2 KB
/
run_scholar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
import os
import sys
from optparse import OptionParser
import gensim
import numpy as np
import pandas as pd
import file_handling as fh
from scholar import Scholar
import torch
from tqdm import trange
def main(args):
usage = "%prog input_dir"
parser = OptionParser(usage=usage)
parser.add_option('-k', dest='n_topics', type=int, default=20,
help='Size of latent representation (~num topics): default=%default')
parser.add_option('-l', dest='learning_rate', type=float, default=0.002,
help='Initial learning rate: default=%default')
parser.add_option('-m', dest='momentum', type=float, default=0.99,
help='beta1 for Adam: default=%default')
parser.add_option('--batch-size', dest='batch_size', type=int, default=200,
help='Size of minibatches: default=%default')
parser.add_option('--epochs', type=int, default=200,
help='Number of epochs: default=%default')
parser.add_option('--train-prefix', type=str, default='train',
help='Prefix of train set: default=%default')
parser.add_option('--test-prefix', type=str, default=None,
help='Prefix of test set: default=%default')
parser.add_option('--labels', type=str, default=None,
help='Read labels from input_dir/[train|test].labels.csv: default=%default')
parser.add_option('--prior-covars', type=str, default=None,
help='Read prior covariates from files with these names (comma-separated): default=%default')
parser.add_option('--topic-covars', type=str, default=None,
help='Read topic covariates from files with these names (comma-separated): default=%default')
parser.add_option('--interactions', action="store_true", default=False,
help='Use interactions between topics and topic covariates: default=%default')
parser.add_option('--covars-predict', action="store_true", default=False,
help='Use covariates as input to classifier: default=%default')
parser.add_option('--min-prior-covar-count', type=int, default=None,
help='Drop prior covariates with less than this many non-zero values in the training dataa: default=%default')
parser.add_option('--min-topic-covar-count', type=int, default=None,
help='Drop topic covariates with less than this many non-zero values in the training dataa: default=%default')
parser.add_option('-r', action="store_true", default=False,
help='Use default regularization: default=%default')
parser.add_option('--l1-topics', type=float, default=0.0,
help='Regularization strength on topic weights: default=%default')
parser.add_option('--l1-topic-covars', type=float, default=0.0,
help='Regularization strength on topic covariate weights: default=%default')
parser.add_option('--l1-interactions', type=float, default=0.0,
help='Regularization strength on topic covariate interaction weights: default=%default')
parser.add_option('--l2-prior-covars', type=float, default=0.0,
help='Regularization strength on prior covariate weights: default=%default')
parser.add_option('--o', dest='output_dir', type=str, default='output',
help='Output directory: default=%default')
parser.add_option('--emb-dim', type=int, default=300,
help='Dimension of input embeddings: default=%default')
parser.add_option('--w2v', dest='word2vec_file', type=str, default=None,
help='Use this word2vec .bin file to initialize and fix embeddings: default=%default')
parser.add_option('--alpha', type=float, default=1.0,
help='Hyperparameter for logistic normal prior: default=%default')
parser.add_option('--no-bg', action="store_true", default=False,
help='Do not use background freq: default=%default')
parser.add_option('--dev-folds', type=int, default=0,
help='Number of dev folds: default=%default')
parser.add_option('--dev-fold', type=int, default=0,
help='Fold to use as dev (if dev_folds > 0): default=%default')
parser.add_option('--device', type=int, default=None,
help='GPU to use: default=%default')
parser.add_option('--seed', type=int, default=None, help='Random seed: default=%default')
parser.add_option('--dist', type=int, default=None, help='distance')
parser.add_option('--model', type=str, default='scholar')
parser.add_option('--topk', type=int, default=1)
options, args = parser.parse_args(args)
input_dir = args[0]
options.input_dir = input_dir
if '20ng' in input_dir:
if 'contrastive' in options.model: torch.save(options, './weights/options/contrastive_20ng_50_options.pt')
else: torch.save(options, './weights/options/20ng_50_options.pt')
else:
if 'contrastive' in options.model: torch.save(options, './weights/options/contrastive_imdb_50_options.pt')
else: torch.save(options, './weights/options/imdb_50_options.pt')
if options.r:
options.l1_topics = 1.0
options.l1_topic_covars = 1.0
options.l1_interactions = 1.0
if options.seed is not None:
rng = np.random.RandomState(options.seed)
seed = options.seed
else:
rng = np.random.RandomState(np.random.randint(0, 100000))
seed = None
# load the training data
train_X, vocab, row_selector, train_ids = load_word_counts(input_dir, options.train_prefix)
train_labels, label_type, label_names, n_labels = load_labels(input_dir, options.train_prefix, row_selector, options)
train_prior_covars, prior_covar_selector, prior_covar_names, n_prior_covars = load_covariates(input_dir, options.train_prefix, row_selector, options.prior_covars, options.min_prior_covar_count)
train_topic_covars, topic_covar_selector, topic_covar_names, n_topic_covars = load_covariates(input_dir, options.train_prefix, row_selector, options.topic_covars, options.min_topic_covar_count)
options.n_train, vocab_size = train_X.shape
options.n_labels = n_labels
if n_labels > 0:
print("Train label proportions:", np.mean(train_labels, axis=0))
# split into training and dev if desired
train_indices, dev_indices = train_dev_split(options, rng)
train_X, dev_X = split_matrix(train_X, train_indices, dev_indices)
train_labels, dev_labels = split_matrix(train_labels, train_indices, dev_indices)
train_prior_covars, dev_prior_covars = split_matrix(train_prior_covars, train_indices, dev_indices)
train_topic_covars, dev_topic_covars = split_matrix(train_topic_covars, train_indices, dev_indices)
if dev_indices is not None:
dev_ids = [train_ids[i] for i in dev_indices]
train_ids = [train_ids[i] for i in train_indices]
else:
dev_ids = None
n_train, _ = train_X.shape
# load the test data
if options.test_prefix is not None:
test_X, _, row_selector, test_ids = load_word_counts(input_dir, options.test_prefix, vocab=vocab)
test_labels, _, _, _ = load_labels(input_dir, options.test_prefix, row_selector, options)
test_prior_covars, _, _, _ = load_covariates(input_dir, options.test_prefix, row_selector, options.prior_covars, covariate_selector=prior_covar_selector)
test_topic_covars, _, _, _ = load_covariates(input_dir, options.test_prefix, row_selector, options.topic_covars, covariate_selector=topic_covar_selector)
n_test, _ = test_X.shape
else:
test_X = None
n_test = 0
test_labels = None
test_prior_covars = None
test_topic_covars = None
# initialize the background using overall word frequencies
init_bg = get_init_bg(train_X)
if options.no_bg:
init_bg = np.zeros_like(init_bg)
# combine the network configuration parameters into a dictionary
network_architecture = make_network(options, vocab_size, label_type, n_labels, n_prior_covars, n_topic_covars)
print("Network architecture:")
for key, val in network_architecture.items():
print(key + ':', val)
# load word vectors
embeddings, update_embeddings = load_word_vectors(options, rng, vocab)
# create the model
model = Scholar(network_architecture, alpha=options.alpha, learning_rate=options.learning_rate, init_embeddings=embeddings, update_embeddings=update_embeddings, init_bg=init_bg, adam_beta1=options.momentum, device=options.device, seed=seed, classify_from_covars=options.covars_predict, model=options.model, topk=options.topk)
# train the model
print("Optimizing full model")
model = train(model, network_architecture, train_X, train_labels, train_prior_covars, train_topic_covars, training_epochs=options.epochs, batch_size=options.batch_size, rng=rng, X_dev=dev_X, Y_dev=dev_labels, PC_dev=dev_prior_covars, TC_dev=dev_topic_covars)
# make output directory
fh.makedirs(options.output_dir)
# display and save weights
print_and_save_weights(options, model, vocab, prior_covar_names, topic_covar_names)
# Evaluate perplexity on dev and test data
if dev_X is not None:
perplexity = evaluate_perplexity(model, dev_X, dev_labels, dev_prior_covars, dev_topic_covars, options.batch_size, eta_bn_prop=0.0)
print("Dev perplexity = %0.4f" % perplexity)
fh.write_list_to_text([str(perplexity)], os.path.join(options.output_dir, 'perplexity.dev.txt'))
if test_X is not None:
perplexity = evaluate_perplexity(model, test_X, test_labels, test_prior_covars, test_topic_covars, options.batch_size, eta_bn_prop=0.0)
print("Test perplexity = %0.4f" % perplexity)
fh.write_list_to_text([str(perplexity)], os.path.join(options.output_dir, 'perplexity.test.txt'))
# evaluate accuracy on predicting labels
if n_labels > 0:
print("Predicting labels")
predict_labels_and_evaluate(model, train_X, train_labels, train_prior_covars, train_topic_covars, options.output_dir, subset='train')
if dev_X is not None:
predict_labels_and_evaluate(model, dev_X, dev_labels, dev_prior_covars, dev_topic_covars, options.output_dir, subset='dev')
if test_X is not None:
predict_labels_and_evaluate(model, test_X, test_labels, test_prior_covars, test_topic_covars, options.output_dir, subset='test')
# print label probabilities for each topic
if n_labels > 0:
print_topic_label_associations(options, label_names, model, n_prior_covars, n_topic_covars)
# save document representations
print("Saving document representations")
save_document_representations(model, train_X, train_labels, train_prior_covars, train_topic_covars, train_ids, options.output_dir, 'train', batch_size=options.batch_size)
if dev_X is not None:
save_document_representations(model, dev_X, dev_labels, dev_prior_covars, dev_topic_covars, dev_ids, options.output_dir, 'dev', batch_size=options.batch_size)
if n_test > 0:
save_document_representations(model, test_X, test_labels, test_prior_covars, test_topic_covars, test_ids, options.output_dir, 'test', batch_size=options.batch_size)
def load_word_counts(input_dir, input_prefix, vocab=None):
print("Loading data")
# laod the word counts and convert to a dense matrix
#temp = fh.load_sparse(os.path.join(input_dir, input_prefix + '.npz')).todense()
#X = np.array(temp, dtype='float32')
X = fh.load_sparse(os.path.join(input_dir, input_prefix + '.npz')).tocsr()
# load the vocabulary
if vocab is None:
vocab = fh.read_json(os.path.join(input_dir, input_prefix + '.vocab.json'))
n_items, vocab_size = X.shape
assert vocab_size == len(vocab)
print("Loaded %d documents with %d features" % (n_items, vocab_size))
ids = fh.read_json(os.path.join(input_dir, input_prefix + '.ids.json'))
# filter out empty documents and return a boolean selector for filtering labels and covariates
#row_selector = np.array(X.sum(axis=1) > 0, dtype=bool)
row_sums = np.array(X.sum(axis=1)).reshape((n_items,))
row_selector = np.array(row_sums > 0, dtype=bool)
print("Found %d non-empty documents" % np.sum(row_selector))
X = X[row_selector, :]
ids = [doc_id for i, doc_id in enumerate(ids) if row_selector[i]]
return X, vocab, row_selector, ids
def load_labels(input_dir, input_prefix, row_selector, options):
labels = None
label_type = None
label_names = None
n_labels = 0
# load the label file if given
if options.labels is not None:
label_file = os.path.join(input_dir, input_prefix + '.' + options.labels + '.csv')
if os.path.exists(label_file):
print("Loading labels from", label_file)
temp = pd.read_csv(label_file, header=0, index_col=0)
label_names = temp.columns
labels = np.array(temp.values)
# select the rows that match the non-empty documents (from load_word_counts)
labels = labels[row_selector, :]
n, n_labels = labels.shape
print("Found %d labels" % n_labels)
else:
raise(FileNotFoundError("Label file {:s} not found".format(label_file)))
return labels, label_type, label_names, n_labels
def load_covariates(input_dir, input_prefix, row_selector, covars_to_load, min_count=None, covariate_selector=None):
covariates = None
covariate_names = None
n_covariates = 0
if covars_to_load is not None:
covariate_list = []
covariate_names_list = []
covar_file_names = covars_to_load.split(',')
# split the given covariate names by commas, and load each one
for covar_file_name in covar_file_names:
covariates_file = os.path.join(input_dir, input_prefix + '.' + covar_file_name + '.csv')
if os.path.exists(covariates_file):
print("Loading covariates from", covariates_file)
temp = pd.read_csv(covariates_file, header=0, index_col=0)
covariate_names = temp.columns
covariates = np.array(temp.values, dtype=np.float32)
# select the rows that match the non-empty documents (from load_word_counts)
covariates = covariates[row_selector, :]
covariate_list.append(covariates)
covariate_names_list.extend(covariate_names)
else:
raise(FileNotFoundError("Covariates file {:s} not found".format(covariates_file)))
# combine the separate covariates into a single matrix
covariates = np.hstack(covariate_list)
covariate_names = covariate_names_list
_, n_covariates = covariates.shape
# if a covariate_selector has been given (from a previous call of load_covariates), drop columns
if covariate_selector is not None:
covariates = covariates[:, covariate_selector]
covariate_names = [name for i, name in enumerate(covariate_names) if covariate_selector[i]]
n_covariates = len(covariate_names)
# otherwise, choose which columns to drop based on how common they are (for binary covariates)
elif min_count is not None and int(min_count) > 0:
print("Removing rare covariates")
covar_sums = covariates.sum(axis=0).reshape((n_covariates, ))
covariate_selector = covar_sums > int(min_count)
covariates = covariates[:, covariate_selector]
covariate_names = [name for i, name in enumerate(covariate_names) if covariate_selector[i]]
n_covariates = len(covariate_names)
return covariates, covariate_selector, covariate_names, n_covariates
def train_dev_split(options, rng):
# randomly split into train and dev
if options.dev_folds > 0:
n_dev = int(options.n_train / options.dev_folds)
indices = np.array(range(options.n_train), dtype=int)
rng.shuffle(indices)
if options.dev_fold < options.dev_folds - 1:
dev_indices = indices[n_dev * options.dev_fold: n_dev * (options.dev_fold +1)]
else:
dev_indices = indices[n_dev * options.dev_fold:]
train_indices = list(set(indices) - set(dev_indices))
return train_indices, dev_indices
else:
return None, None
def split_matrix(train_X, train_indices, dev_indices):
# split a matrix (word counts, labels, or covariates), into train and dev
if train_X is not None and dev_indices is not None:
dev_X = train_X[dev_indices, :]
train_X = train_X[train_indices, :]
return train_X, dev_X
else:
return train_X, None
def get_init_bg(data):
#Compute the log background frequency of all words
#sums = np.sum(data, axis=0)+1
n_items, vocab_size = data.shape
sums = np.array(data.sum(axis=0)).reshape((vocab_size,))+1.
print("Computing background frequencies")
print("Min/max word counts in training data: %d %d" % (int(np.min(sums)), int(np.max(sums))))
bg = np.array(np.log(sums) - np.log(float(np.sum(sums))), dtype=np.float32)
return bg
def load_word_vectors(options, rng, vocab):
# load word2vec vectors if given
if options.word2vec_file is not None:
vocab_size = len(vocab)
vocab_dict = dict(zip(vocab, range(vocab_size)))
# randomly initialize word vectors for each term in the vocabualry
embeddings = np.array(rng.rand(options.emb_dim, vocab_size) * 0.25 - 0.5, dtype=np.float32)
count = 0
print("Loading word vectors")
# load the word2vec vectors
pretrained = gensim.models.KeyedVectors.load_word2vec_format(options.word2vec_file, binary=True)
# replace the randomly initialized vectors with the word2vec ones for any that are available
for word, index in vocab_dict.items():
if word in pretrained:
count += 1
embeddings[:, index] = pretrained[word]
print("Found embeddings for %d words" % count)
update_embeddings = False
else:
embeddings = None
update_embeddings = True
return embeddings, update_embeddings
def make_network(options, vocab_size, label_type=None, n_labels=0, n_prior_covars=0, n_topic_covars=0):
# Assemble the network configuration parameters into a dictionary
network_architecture = \
dict(embedding_dim=options.emb_dim,
n_topics=options.n_topics,
vocab_size=vocab_size,
label_type=label_type,
n_labels=n_labels,
n_prior_covars=n_prior_covars,
n_topic_covars=n_topic_covars,
l1_beta_reg=options.l1_topics,
l1_beta_c_reg=options.l1_topic_covars,
l1_beta_ci_reg=options.l1_interactions,
l2_prior_reg=options.l2_prior_covars,
classifier_layers=1,
use_interactions=options.interactions,
dist=options.dist,
model=options.model
)
return network_architecture
def train(model, network_architecture, X, Y, PC, TC, batch_size=200, training_epochs=100, display_step=10, X_dev=None, Y_dev=None, PC_dev=None, TC_dev=None, bn_anneal=True, init_eta_bn_prop=1.0, rng=None, min_weights_sq=1e-7):
# Train the model
n_train, vocab_size = X.shape
mb_gen = create_minibatch(X, Y, PC, TC, batch_size=batch_size, rng=rng)
total_batch = int(n_train / batch_size)
batches = 0
eta_bn_prop = init_eta_bn_prop # interpolation between batch norm and no batch norm in final layer of recon
model.train()
n_topics = network_architecture['n_topics']
n_topic_covars = network_architecture['n_topic_covars']
vocab_size = network_architecture['vocab_size']
# create matrices to track the current estimates of the priors on the individual weights
if network_architecture['l1_beta_reg'] > 0:
l1_beta = 0.5 * np.ones([vocab_size, n_topics], dtype=np.float32) / float(n_train)
else:
l1_beta = None
if network_architecture['l1_beta_c_reg'] > 0 and network_architecture['n_topic_covars'] > 0:
l1_beta_c = 0.5 * np.ones([vocab_size, n_topic_covars], dtype=np.float32) / float(n_train)
else:
l1_beta_c = None
if network_architecture['l1_beta_ci_reg'] > 0 and network_architecture['n_topic_covars'] > 0 and network_architecture['use_interactions']:
l1_beta_ci = 0.5 * np.ones([vocab_size, n_topics * n_topic_covars], dtype=np.float32) / float(n_train)
else:
l1_beta_ci = None
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
accuracy = 0.
avg_nl = 0.
avg_kld = 0.
# Loop over all batches
for i in range(total_batch):
# get a minibatch
batch_xs, batch_ys, batch_pcs, batch_tcs = next(mb_gen)
# do one minibatch update
cost, recon_y, thetas, nl, kld = model.fit(batch_xs, batch_ys, batch_pcs, batch_tcs, eta_bn_prop=eta_bn_prop, l1_beta=l1_beta, l1_beta_c=l1_beta_c, l1_beta_ci=l1_beta_ci)
# compute accuracy on minibatch
if network_architecture['n_labels'] > 0:
accuracy += np.sum(np.argmax(recon_y, axis=1) == np.argmax(batch_ys, axis=1)) / float(n_train)
# Compute average loss
avg_cost += float(cost) / n_train * batch_size
avg_nl += float(nl) / n_train * batch_size
avg_kld += float(kld) / n_train * batch_size
batches += 1
if np.isnan(avg_cost):
print(epoch, i, np.sum(batch_xs, 1).astype(np.int), batch_xs.shape)
print('Encountered NaN, stopping training. Please check the learning_rate settings and the momentum.')
sys.exit()
# if we're using regularization, update the priors on the individual weights
if network_architecture['l1_beta_reg'] > 0:
weights = model.get_weights().T
weights_sq = weights ** 2
# avoid infinite regularization
weights_sq[weights_sq < min_weights_sq] = min_weights_sq
l1_beta = 0.5 / weights_sq / float(n_train)
if network_architecture['l1_beta_c_reg'] > 0 and network_architecture['n_topic_covars'] > 0:
weights = model.get_covar_weights().T
weights_sq = weights ** 2
weights_sq[weights_sq < min_weights_sq] = min_weights_sq
l1_beta_c = 0.5 / weights_sq / float(n_train)
if network_architecture['l1_beta_ci_reg'] > 0 and network_architecture['n_topic_covars'] > 0 and network_architecture['use_interactions']:
weights = model.get_covar_interaction_weights().T
weights_sq = weights ** 2
weights_sq[weights_sq < min_weights_sq] = min_weights_sq
l1_beta_ci = 0.5 / weights_sq / float(n_train)
# Display logs per epoch step
if epoch % display_step == 0 and epoch > 0:
if network_architecture['n_labels'] > 0:
print("Epoch:", '%d' % epoch, "; cost =", "{:.9f}".format(avg_cost), "; training accuracy (noisy) =", "{:.9f}".format(accuracy))
else:
print("Epoch:", '%d' % epoch, "cost=", "{:.9f}".format(avg_cost))
if X_dev is not None:
# switch to eval mode for intermediate evaluation
model.eval()
dev_perplexity = evaluate_perplexity(model, X_dev, Y_dev, PC_dev, TC_dev, batch_size, eta_bn_prop=eta_bn_prop)
n_dev, _ = X_dev.shape
if network_architecture['n_labels'] > 0:
dev_pred_probs = predict_label_probs(model, X_dev, PC_dev, TC_dev, eta_bn_prop=eta_bn_prop)
dev_predictions = np.argmax(dev_pred_probs, axis=1)
dev_accuracy = float(np.sum(dev_predictions == np.argmax(Y_dev, axis=1))) / float(n_dev)
print("Epoch: %d; Dev perplexity = %0.4f; Dev accuracy = %0.4f" % (epoch, dev_perplexity, dev_accuracy))
else:
print("Epoch: %d; Dev perplexity = %0.4f" % (epoch, dev_perplexity))
# switch back to training mode
model.train()
# anneal eta_bn_prop from 1.0 to 0.0 over training
if bn_anneal:
if eta_bn_prop > 0:
eta_bn_prop -= 1.0 / float(0.75 * training_epochs)
if eta_bn_prop < 0:
eta_bn_prop = 0.0
# finish training
model.eval()
return model
def create_minibatch(X, Y, PC, TC, batch_size=200, rng=None):
# Yield a random minibatch
while True:
# Return random data samples of a size 'minibatch_size' at each iteration
if rng is not None:
ixs = rng.randint(X.shape[0], size=batch_size)
else:
ixs = np.random.randint(X.shape[0], size=batch_size)
X_mb = np.array(X[ixs, :].todense()).astype('float32')
if Y is not None:
Y_mb = Y[ixs, :].astype('float32')
else:
Y_mb = None
if PC is not None:
PC_mb = PC[ixs, :].astype('float32')
else:
PC_mb = None
if TC is not None:
TC_mb = TC[ixs, :].astype('float32')
else:
TC_mb = None
yield X_mb, Y_mb, PC_mb, TC_mb
def get_minibatch(X, Y, PC, TC, batch, batch_size=200):
# Get a particular non-random segment of the data
n_items, _ = X.shape
n_batches = int(np.ceil(n_items / float(batch_size)))
if batch < n_batches - 1:
ixs = np.arange(batch * batch_size, (batch + 1) * batch_size)
else:
ixs = np.arange(batch * batch_size, n_items)
X_mb = np.array(X[ixs, :].todense()).astype('float32')
if Y is not None:
Y_mb = Y[ixs, :].astype('float32')
else:
Y_mb = None
if PC is not None:
PC_mb = PC[ixs, :].astype('float32')
else:
PC_mb = None
if TC is not None:
TC_mb = TC[ixs, :].astype('float32')
else:
TC_mb = None
return X_mb, Y_mb, PC_mb, TC_mb
def predict_label_probs(model, X, PC, TC, batch_size=200, eta_bn_prop=0.0):
# Predict a probability distribution over labels for each instance using the classifier part of the network
n_items, _ = X.shape
n_batches = int(np.ceil(n_items / batch_size))
pred_probs_all = []
# make predictions on minibatches and then combine
for i in range(n_batches):
batch_xs, batch_ys, batch_pcs, batch_tcs = get_minibatch(X, None, PC, TC, i, batch_size)
Z, pred_probs = model.predict(batch_xs, batch_pcs, batch_tcs, eta_bn_prop=eta_bn_prop)
pred_probs_all.append(pred_probs)
pred_probs = np.vstack(pred_probs_all)
return pred_probs
def print_and_save_weights(options, model, vocab, prior_covar_names=None, topic_covar_names=None):
# print background
bg = model.get_bg()
if not options.no_bg:
print_top_bg(bg, vocab)
if '20ng' in options.input_dir:
if 'contrastive' in options.model.lower(): torch.save(model, './weights/contrastive_20ng_50.pt')
else: torch.save(model, './weights/20ng_50.pt')
else:
if 'contrastive' in options.model.lower(): torch.save(model, './weights/contrastive_imdb_50.pt')
else: torch.save(model, './weights/imdb_50.pt')
# print topics
emb = model.get_weights()
print("Topics:")
maw, sparsity = print_top_words(emb, vocab)
print("sparsity in topics = %0.4f" % sparsity)
save_weights(options.output_dir, emb, bg, vocab, sparsity_threshold=1e-5)
fh.write_list_to_text(['{:.4f}'.format(maw)], os.path.join(options.output_dir, 'maw.txt'))
fh.write_list_to_text(['{:.4f}'.format(sparsity)], os.path.join(options.output_dir, 'sparsity.txt'))
if prior_covar_names is not None:
prior_weights = model.get_prior_weights()
print("Topic prior associations:")
print("Covariates:", ' '.join(prior_covar_names))
for k in range(options.n_topics):
output = str(k) + ': '
for c in range(len(prior_covar_names)):
output += '%.4f ' % prior_weights[c, k]
print(output)
if options.output_dir is not None:
np.savez(os.path.join(options.output_dir, 'prior_w.npz'), weights=prior_weights, names=prior_covar_names)
if topic_covar_names is not None:
beta_c = model.get_covar_weights()
print("Covariate deviations:")
maw, sparsity = print_top_words(beta_c, vocab, topic_covar_names)
print("sparsity in covariates = %0.4f" % sparsity)
if options.output_dir is not None:
np.savez(os.path.join(options.output_dir, 'beta_c.npz'), beta=beta_c, names=topic_covar_names)
if options.interactions:
print("Covariate interactions")
beta_ci = model.get_covar_interaction_weights()
print(beta_ci.shape)
if topic_covar_names is not None:
names = [str(k) + ':' + c for k in range(options.n_topics) for c in topic_covar_names]
else:
names = None
maw, sparsity = print_top_words(beta_ci, vocab, names)
if options.output_dir is not None:
np.savez(os.path.join(options.output_dir, 'beta_ci.npz'), beta=beta_ci, names=names)
print("sparsity in covariate interactions = %0.4f" % sparsity)
def print_top_words(beta, feature_names, topic_names=None, n_pos=8, n_neg=8, sparsity_threshold=1e-5, values=False):
"""
Display the highest and lowest weighted words in each topic, along with mean ave weight and sparisty
"""
sparsity_vals = []
maw_vals = []
for i in range(len(beta)):
# sort the beta weights
order = list(np.argsort(beta[i]))
order.reverse()
output = ''
# get the top words
for j in range(n_pos):
if np.abs(beta[i][order[j]]) > sparsity_threshold:
output += feature_names[order[j]] + ' '
if values:
output += '(' + str(beta[i][order[j]]) + ') '
order.reverse()
if n_neg > 0:
output += ' / '
# get the bottom words
for j in range(n_neg):
if np.abs(beta[i][order[j]]) > sparsity_threshold:
output += feature_names[order[j]] + ' '
if values:
output += '(' + str(beta[i][order[j]]) + ') '
# compute sparsity
sparsity = float(np.sum(np.abs(beta[i]) < sparsity_threshold) / float(len(beta[i])))
maw = np.mean(np.abs(beta[i]))
sparsity_vals.append(sparsity)
maw_vals.append(maw)
output += '; sparsity=%0.4f' % sparsity
# print the topic summary
if topic_names is not None:
output = topic_names[i] + ': ' + output
else:
output = str(i) + ': ' + output
print(output)
# return mean average weight and sparsity
return np.mean(maw_vals), np.mean(sparsity_vals)
def print_top_bg(bg, feature_names, n_top_words=10):
# Print the most highly weighted words in the background log frequency
print('Background frequencies of top words:')
print(" ".join([feature_names[j]
for j in bg.argsort()[:-n_top_words - 1:-1]]))
temp = bg.copy()
temp.sort()
print(np.exp(temp[:-n_top_words-1:-1]))
def evaluate_perplexity(model, X, Y, PC, TC, batch_size, eta_bn_prop=0.0):
# Evaluate the approximate perplexity on a subset of the data (using words, labels, and covariates)
n_items, vocab_size = X.shape
doc_sums = np.array(X.sum(axis=1), dtype=float).reshape((n_items,))
X = X.astype('float32')
if Y is not None:
Y = Y.astype('float32')
if PC is not None:
PC = PC.astype('float32')
if TC is not None:
TC = TC.astype('float32')
losses = []
n_items, _ = X.shape
n_batches = int(np.ceil(n_items / batch_size))
for i in range(n_batches):
batch_xs, batch_ys, batch_pcs, batch_tcs = get_minibatch(X, Y, PC, TC, i, batch_size)
batch_losses = model.get_losses(batch_xs, batch_ys, batch_pcs, batch_tcs, eta_bn_prop=eta_bn_prop)
losses.append(batch_losses)
losses = np.hstack(losses)
perplexity = np.exp(np.mean(losses / doc_sums))
return perplexity
def save_weights(output_dir, beta, bg, feature_names, sparsity_threshold=1e-5):
# Save model weights to npz files (also the top words in each topic
np.savez(os.path.join(output_dir, 'beta.npz'), beta=beta)
if bg is not None:
np.savez(os.path.join(output_dir, 'bg.npz'), bg=bg)
fh.write_to_json(feature_names, os.path.join(output_dir, 'vocab.json'), sort_keys=False)
topics_file = os.path.join(output_dir, 'topics.txt')
lines = []
for i in range(len(beta)):
order = list(np.argsort(beta[i]))
order.reverse()
pos_words = [feature_names[j] for j in order[:100] if beta[i][j] > sparsity_threshold]
output = ' '.join(pos_words)
lines.append(output)
fh.write_list_to_text(lines, topics_file)
def predict_labels_and_evaluate(model, X, Y, PC, TC, output_dir=None, subset='train', batch_size=200):
# Predict labels for all instances using the classifier network and evaluate the accuracy
pred_probs = predict_label_probs(model, X, PC, TC, batch_size, eta_bn_prop=0.0)
np.savez(os.path.join(output_dir, 'pred_probs.' + subset + '.npz'), pred_probs=pred_probs)
predictions = np.argmax(pred_probs, axis=1)
accuracy = float(np.sum(predictions == np.argmax(Y, axis=1)) / float(len(Y)))
print(subset, "accuracy on labels = %0.4f" % accuracy)
if output_dir is not None:
fh.write_list_to_text([str(accuracy)], os.path.join(output_dir, 'accuracy.' + subset + '.txt'))
def print_topic_label_associations(options, label_names, model, n_prior_covars, n_topic_covars):
# Print associations between topics and labels
if options.n_labels > 0 and options.n_labels < 7:
print("Label probabilities based on topics")
print("Labels:", ' '.join([name for name in label_names]))
probs_list = []
for k in range(options.n_topics):
Z = np.zeros([1, options.n_topics]).astype('float32')
Z[0, k] = 1.0
Y = None
if n_prior_covars > 0:
PC = np.zeros([1, n_prior_covars]).astype('float32')
else:
PC = None
if n_topic_covars > 0:
TC = np.zeros([1, n_topic_covars]).astype('float32')
else:
TC = None
probs = model.predict_from_topics(Z, PC, TC)
probs_list.append(probs)
if options.n_labels > 0 and options.n_labels < 7:
output = str(k) + ': '
for i in range(options.n_labels):
output += '%.4f ' % probs[0, i]
print(output)
probs = np.vstack(probs_list)
np.savez(os.path.join(options.output_dir, 'topics_to_labels.npz'), probs=probs, label=label_names)
def save_document_representations(model, X, Y, PC, TC, ids, output_dir, partition, batch_size=200):
# compute the mean of the posterior of the latent representation for each documetn and save it
if Y is not None:
Y = np.zeros_like(Y)
n_items, _ = X.shape
n_batches = int(np.ceil(n_items / batch_size))
thetas = []
for i in range(n_batches):
batch_xs, batch_ys, batch_pcs, batch_tcs = get_minibatch(X, Y, PC, TC, i, batch_size)
thetas.append(model.compute_theta(batch_xs, batch_ys, batch_pcs, batch_tcs))
theta = np.vstack(thetas)
np.savez(os.path.join(output_dir, 'theta.' + partition + '.npz'), theta=theta, ids=ids)
if __name__ == '__main__':
main(sys.argv[1:])