-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrecursivetensor.lua
213 lines (199 loc) · 5.87 KB
/
recursivetensor.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
function torchx.recursiveResizeAs(t1,t2)
if torch.type(t2) == 'table' then
t1 = (torch.type(t1) == 'table') and t1 or {t1}
for key,_ in pairs(t2) do
t1[key], t2[key] = torchx.recursiveResizeAs(t1[key], t2[key])
end
elseif torch.isTensor(t2) then
t1 = torch.isTensor(t1) and t1 or t2.new()
t1:resizeAs(t2)
else
error("expecting nested tensors or tables. Got "..
torch.type(t1).." and "..torch.type(t2).." instead")
end
return t1, t2
end
function torchx.recursiveSet(t1,t2)
if torch.type(t2) == 'table' then
t1 = (torch.type(t1) == 'table') and t1 or {t1}
for key,_ in pairs(t2) do
t1[key], t2[key] = torchx.recursiveSet(t1[key], t2[key])
end
elseif torch.isTensor(t2) then
t1 = torch.isTensor(t1) and t1 or t2.new()
t1:set(t2)
else
error("expecting nested tensors or tables. Got "..
torch.type(t1).." and "..torch.type(t2).." instead")
end
return t1, t2
end
function torchx.recursiveCopy(t1,t2)
if torch.type(t2) == 'table' then
t1 = (torch.type(t1) == 'table') and t1 or {t1}
for key,_ in pairs(t2) do
t1[key], t2[key] = torchx.recursiveCopy(t1[key], t2[key])
end
elseif torch.isTensor(t2) then
t1 = torch.isTensor(t1) and t1 or t2.new()
t1:resizeAs(t2):copy(t2)
else
error("expecting nested tensors or tables. Got "..
torch.type(t1).." and "..torch.type(t2).." instead")
end
return t1, t2
end
function torchx.recursiveAdd(t1, t2)
if torch.type(t2) == 'table' then
t1 = (torch.type(t1) == 'table') and t1 or {t1}
for key,_ in pairs(t2) do
t1[key], t2[key] = torchx.recursiveAdd(t1[key], t2[key])
end
elseif torch.isTensor(t1) and torch.isTensor(t2) then
t1:add(t2)
else
error("expecting nested tensors or tables. Got "..
torch.type(t1).." and "..torch.type(t2).." instead")
end
return t1, t2
end
function torchx.recursiveTensorEq(t1, t2)
if torch.type(t2) == 'table' then
local isEqual = true
if torch.type(t1) ~= 'table' then
return false
end
for key,_ in pairs(t2) do
isEqual = isEqual and torchx.recursiveTensorEq(t1[key], t2[key])
end
return isEqual
elseif torch.isTensor(t2) and torch.isTensor(t2) then
local diff = t1-t2
local err = diff:abs():max()
return err < 0.00001
else
error("expecting nested tensors or tables. Got "..
torch.type(t1).." and "..torch.type(t2).." instead")
end
end
function torchx.recursiveNormal(t2)
if torch.type(t2) == 'table' then
for key,_ in pairs(t2) do
t2[key] = torchx.recursiveNormal(t2[key])
end
elseif torch.isTensor(t2) then
t2:normal()
else
error("expecting tensor or table thereof. Got "
..torch.type(t2).." instead")
end
return t2
end
function torchx.recursiveFill(t2, val)
if torch.type(t2) == 'table' then
for key,_ in pairs(t2) do
t2[key] = torchx.recursiveFill(t2[key], val)
end
elseif torch.isTensor(t2) then
t2:fill(val)
else
error("expecting tensor or table thereof. Got "
..torch.type(t2).." instead")
end
return t2
end
function torchx.recursiveType(param, type_str)
if torch.type(param) == 'table' then
for i = 1, #param do
param[i] = torchx.recursiveType(param[i], type_str)
end
else
if torch.typename(param) and
torch.typename(param):find('torch%..+Tensor') then
param = param:type(type_str)
end
end
return param
end
function torchx.recursiveSum(t2)
local sum = 0
if torch.type(t2) == 'table' then
for key,_ in pairs(t2) do
sum = sum + torchx.recursiveSum(t2[key], val)
end
elseif torch.isTensor(t2) then
return t2:sum()
else
error("expecting tensor or table thereof. Got "
..torch.type(t2).." instead")
end
return sum
end
function torchx.recursiveNew(t2)
if torch.type(t2) == 'table' then
local t1 = {}
for key,_ in pairs(t2) do
t1[key] = torchx.recursiveNew(t2[key])
end
return t1
elseif torch.isTensor(t2) then
return t2.new()
else
error("expecting tensor or table thereof. Got "
..torch.type(t2).." instead")
end
end
function torchx.recursiveIndex(res, src, dim, indices)
if torch.type(src) == 'table' then
res = (torch.type(res) == 'table') and res or {res}
for key,_ in pairs(src) do
res[key] = torchx.recursiveIndex(res[key], src[key], dim, indices)
end
elseif torch.isTensor(src) then
res = torch.isTensor(res) and res or src.new()
res:index(src, dim, indices)
else
error("expecting nested tensors or tables. Got "..
torch.type(res).." and "..torch.type(src).." instead")
end
return res
end
-- get the batch size (i.e. size of first dim for a nested tensor)
function torchx.recursiveBatchSize(input)
if torch.type(input) == 'table' then
return torchx.recursiveBatchSize(input[1])
else
assert(torch.isTensor(input))
return input:size(1)
end
end
function torchx.recursiveSize(input, excludedim)
local res
if torch.type(input) == 'table' then
res = {}
for k,v in pairs(input) do
res[k] = torchx.recursiveSize(v, excludedim)
end
else
assert(torch.isTensor(input))
res = input:size():totable()
if excludedim then
table.remove(res, excludedim)
end
end
return res
end
function torchx.recursiveSub(src, start, stop)
local res
if torch.type(src) == 'table' then
res = {}
for key,_ in pairs(src) do
res[key] = torchx.recursiveSub(src[key], start, stop)
end
elseif torch.isTensor(src) then
res = src:sub(start, stop)
else
error("expecting nested tensors or tables. Got "..torch.type(src).." instead")
end
return res
end