-
Notifications
You must be signed in to change notification settings - Fork 187
/
Copy pathraster.js
504 lines (475 loc) · 17.6 KB
/
raster.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import {blurImage, Delaunay, randomLcg, rgb} from "d3";
import {valueObject} from "../channel.js";
import {create} from "../context.js";
import {map, first, second, third, isTuples, isNumeric, isTemporal, identity} from "../options.js";
import {maybeColorChannel, maybeNumberChannel} from "../options.js";
import {Mark} from "../mark.js";
import {applyAttr, applyDirectStyles, applyIndirectStyles, applyTransform, impliedString} from "../style.js";
import {initializer} from "../transforms/basic.js";
const defaults = {
ariaLabel: "raster",
stroke: null,
pixelSize: 1
};
function number(input, name) {
const x = +input;
if (isNaN(x)) throw new Error(`invalid ${name}: ${input}`);
return x;
}
function integer(input, name) {
const x = Math.floor(input);
if (isNaN(x)) throw new Error(`invalid ${name}: ${input}`);
return x;
}
export class AbstractRaster extends Mark {
constructor(data, channels, options = {}, defaults) {
let {
width,
height,
x,
y,
x1 = x == null ? 0 : undefined,
y1 = y == null ? 0 : undefined,
x2 = x == null ? width : undefined,
y2 = y == null ? height : undefined,
pixelSize = defaults.pixelSize,
blur = 0,
interpolate
} = options;
if (width != null) width = integer(width, "width");
if (height != null) height = integer(height, "height");
// These represent the (minimum) bounds of the raster; they are not
// evaluated for each datum. Also, if x and y are not specified explicitly,
// then these bounds are used to compute the dense linear grid.
if (x1 != null) x1 = number(x1, "x1");
if (y1 != null) y1 = number(y1, "y1");
if (x2 != null) x2 = number(x2, "x2");
if (y2 != null) y2 = number(y2, "y2");
if (x == null && (x1 == null || x2 == null)) throw new Error("missing x");
if (y == null && (y1 == null || y2 == null)) throw new Error("missing y");
if (data != null && width != null && height != null) {
// If x and y are not given, assume the data is a dense array of samples
// covering the entire grid in row-major order. These defaults allow
// further shorthand where x and y represent grid column and row index.
// TODO If we know that the x and y scales are linear, then we could avoid
// materializing these columns to improve performance.
if (x === undefined && x1 != null && x2 != null) x = denseX(x1, x2, width, height);
if (y === undefined && y1 != null && y2 != null) y = denseY(y1, y2, width, height);
}
super(
data,
{
x: {value: x, scale: "x", optional: true},
y: {value: y, scale: "y", optional: true},
x1: {value: x1 == null ? null : [x1], scale: "x", optional: true, filter: null},
y1: {value: y1 == null ? null : [y1], scale: "y", optional: true, filter: null},
x2: {value: x2 == null ? null : [x2], scale: "x", optional: true, filter: null},
y2: {value: y2 == null ? null : [y2], scale: "y", optional: true, filter: null},
...channels
},
options,
defaults
);
this.width = width;
this.height = height;
this.pixelSize = number(pixelSize, "pixelSize");
this.blur = number(blur, "blur");
this.interpolate = x == null || y == null ? null : maybeInterpolate(interpolate); // interpolation requires x & y
}
}
export class Raster extends AbstractRaster {
constructor(data, options = {}) {
const {imageRendering} = options;
if (data == null) {
const {fill, fillOpacity} = options;
if (maybeNumberChannel(fillOpacity)[0] !== undefined) options = sampler("fillOpacity", options);
if (maybeColorChannel(fill)[0] !== undefined) options = sampler("fill", options);
}
super(data, undefined, options, defaults);
this.imageRendering = impliedString(imageRendering, "auto");
}
// Ignore the color scale, so the fill channel is returned unscaled.
scale(channels, {color, ...scales}, context) {
return super.scale(channels, scales, context);
}
render(index, scales, values, dimensions, context) {
const color = scales[values.channels.fill?.scale] ?? ((x) => x);
const {x: X, y: Y} = values;
const {document} = context;
const [x1, y1, x2, y2] = renderBounds(values, dimensions, context);
const dx = x2 - x1;
const dy = y2 - y1;
const {pixelSize: k, width: w = Math.round(Math.abs(dx) / k), height: h = Math.round(Math.abs(dy) / k)} = this;
const n = w * h;
// Interpolate the samples to fill the raster grid. If interpolate is null,
// then a continuous function is being sampled, and the raster grid is
// already aligned with the canvas.
let {fill: F, fillOpacity: FO} = values;
let offset = 0;
if (this.interpolate) {
const kx = w / dx;
const ky = h / dy;
const IX = map(X, (x) => (x - x1) * kx, Float64Array);
const IY = map(Y, (y) => (y - y1) * ky, Float64Array);
if (F) F = this.interpolate(index, w, h, IX, IY, F);
if (FO) FO = this.interpolate(index, w, h, IX, IY, FO);
}
// When faceting without interpolation, as when sampling a continuous
// function, offset into the dense grid based on the current facet index.
else if (this.data == null && index) offset = index.fi * n;
// Render the raster grid to the canvas, blurring if needed.
const canvas = document.createElement("canvas");
canvas.width = w;
canvas.height = h;
const context2d = canvas.getContext("2d");
const image = context2d.createImageData(w, h);
const imageData = image.data;
let {r, g, b} = rgb(this.fill) ?? {r: 0, g: 0, b: 0};
let a = (this.fillOpacity ?? 1) * 255;
for (let i = 0; i < n; ++i) {
const j = i << 2;
if (F) {
const fi = color(F[i + offset]);
if (fi == null) {
imageData[j + 3] = 0;
continue;
}
({r, g, b} = rgb(fi));
}
if (FO) a = FO[i + offset] * 255;
imageData[j + 0] = r;
imageData[j + 1] = g;
imageData[j + 2] = b;
imageData[j + 3] = a;
}
if (this.blur > 0) blurImage(image, this.blur);
context2d.putImageData(image, 0, 0);
return create("svg:g", context)
.call(applyIndirectStyles, this, dimensions, context)
.call(applyTransform, this, scales)
.call((g) =>
g
.append("image")
.attr("transform", `translate(${x1},${y1}) scale(${Math.sign(x2 - x1)},${Math.sign(y2 - y1)})`)
.attr("width", Math.abs(dx))
.attr("height", Math.abs(dy))
.attr("preserveAspectRatio", "none")
.call(applyAttr, "image-rendering", this.imageRendering)
.call(applyDirectStyles, this)
.attr("xlink:href", canvas.toDataURL())
)
.node();
}
}
export function maybeTuples(k, data, options) {
if (arguments.length < 3) (options = data), (data = null);
let {x, y, [k]: z, ...rest} = options;
// Because we use implicit x and y when z is a function of (x, y), and when
// data is a dense grid, we must further disambiguate by testing whether data
// contains [x, y, z?] tuples. Hence you can’t use this shorthand with a
// transform that lazily generates tuples, but that seems reasonable since
// this is just for convenience anyway.
if (x === undefined && y === undefined && isTuples(data)) {
(x = first), (y = second);
if (z === undefined) z = third;
}
return [data, {...rest, x, y, [k]: z}];
}
export function raster() {
const [data, options] = maybeTuples("fill", ...arguments);
return new Raster(
data,
data == null || options.fill !== undefined || options.fillOpacity !== undefined
? options
: {...options, fill: identity}
);
}
// See rasterBounds; this version is called during render.
function renderBounds({x1, y1, x2, y2}, dimensions, {projection}) {
const {width, height, marginTop, marginRight, marginBottom, marginLeft} = dimensions;
return [
x1 && projection == null ? x1[0] : marginLeft,
y1 && projection == null ? y1[0] : marginTop,
x2 && projection == null ? x2[0] : width - marginRight,
y2 && projection == null ? y2[0] : height - marginBottom
];
}
// If x1, y1, x2, y2 were specified, and no projection is in use (and thus the
// raster grid is necessarily an axis-aligned rectangle), then we can compute
// tighter bounds for the image, improving resolution.
export function rasterBounds({x1, y1, x2, y2}, scales, dimensions, context) {
const channels = {};
if (x1) channels.x1 = x1;
if (y1) channels.y1 = y1;
if (x2) channels.x2 = x2;
if (y2) channels.y2 = y2;
return renderBounds(valueObject(channels, scales), dimensions, context);
}
// Evaluates the function with the given name, if it exists, on the raster grid,
// generating a channel of the same name.
export function sampler(name, options = {}) {
const {[name]: value} = options;
if (typeof value !== "function") throw new Error(`invalid ${name}: not a function`);
return initializer({...options, [name]: undefined}, function (data, facets, channels, scales, dimensions, context) {
const {x, y} = scales;
// TODO Allow projections, if invertible.
if (!x) throw new Error("missing scale: x");
if (!y) throw new Error("missing scale: y");
const [x1, y1, x2, y2] = rasterBounds(channels, scales, dimensions, context);
const dx = x2 - x1;
const dy = y2 - y1;
const {pixelSize: k} = this;
// Note: this must exactly match the defaults in render above!
const {width: w = Math.round(Math.abs(dx) / k), height: h = Math.round(Math.abs(dy) / k)} = options;
// TODO Hint to use a typed array when possible?
const V = new Array(w * h * (facets ? facets.length : 1));
const kx = dx / w;
const ky = dy / h;
let i = 0;
for (const facet of facets ?? [undefined]) {
for (let yi = 0.5; yi < h; ++yi) {
for (let xi = 0.5; xi < w; ++xi, ++i) {
V[i] = value(x.invert(x1 + xi * kx), y.invert(y1 + yi * ky), facet);
}
}
}
return {data: V, facets, channels: {[name]: {value: V, scale: "auto"}}};
});
}
function maybeInterpolate(interpolate) {
if (typeof interpolate === "function") return interpolate;
if (interpolate == null) return interpolateNone;
switch (`${interpolate}`.toLowerCase()) {
case "none":
return interpolateNone;
case "nearest":
return interpolateNearest;
case "barycentric":
return interpolatorBarycentric();
case "random-walk":
return interpolatorRandomWalk();
}
throw new Error(`invalid interpolate: ${interpolate}`);
}
// Applies a simple forward mapping of samples, binning them into pixels without
// any blending or interpolation. Note: if multiple samples map to the same
// pixel, the last one wins; this can introduce bias if the points are not in
// random order, so use Plot.shuffle to randomize the input if needed.
export function interpolateNone(index, width, height, X, Y, V) {
const W = new Array(width * height);
for (const i of index) {
if (X[i] < 0 || X[i] >= width || Y[i] < 0 || Y[i] >= height) continue;
W[Math.floor(Y[i]) * width + Math.floor(X[i])] = V[i];
}
return W;
}
export function interpolatorBarycentric({random = randomLcg(42)} = {}) {
return (index, width, height, X, Y, V) => {
// Interpolate the interior of all triangles with barycentric coordinates
const {points, triangles, hull} = Delaunay.from(
index,
(i) => X[i],
(i) => Y[i]
);
const W = new V.constructor(width * height).fill(NaN);
const S = new Uint8Array(width * height); // 1 if pixel has been seen.
const mix = mixer(V, random);
for (let i = 0; i < triangles.length; i += 3) {
const ta = triangles[i];
const tb = triangles[i + 1];
const tc = triangles[i + 2];
const Ax = points[2 * ta];
const Bx = points[2 * tb];
const Cx = points[2 * tc];
const Ay = points[2 * ta + 1];
const By = points[2 * tb + 1];
const Cy = points[2 * tc + 1];
const x1 = Math.min(Ax, Bx, Cx);
const x2 = Math.max(Ax, Bx, Cx);
const y1 = Math.min(Ay, By, Cy);
const y2 = Math.max(Ay, By, Cy);
const z = (By - Cy) * (Ax - Cx) + (Ay - Cy) * (Cx - Bx);
if (!z) continue;
const va = V[index[ta]];
const vb = V[index[tb]];
const vc = V[index[tc]];
for (let x = Math.floor(x1); x < x2; ++x) {
for (let y = Math.floor(y1); y < y2; ++y) {
if (x < 0 || x >= width || y < 0 || y >= height) continue;
const xp = x + 0.5; // sample pixel centroids
const yp = y + 0.5;
const s = Math.sign(z);
const ga = (By - Cy) * (xp - Cx) + (yp - Cy) * (Cx - Bx);
if (ga * s < 0) continue;
const gb = (Cy - Ay) * (xp - Cx) + (yp - Cy) * (Ax - Cx);
if (gb * s < 0) continue;
const gc = z - (ga + gb);
if (gc * s < 0) continue;
const i = x + width * y;
W[i] = mix(va, ga / z, vb, gb / z, vc, gc / z, x, y);
S[i] = 1;
}
}
}
extrapolateBarycentric(W, S, X, Y, V, width, height, hull, index, mix);
return W;
};
}
// Extrapolate by finding the closest point on the hull.
function extrapolateBarycentric(W, S, X, Y, V, width, height, hull, index, mix) {
X = Float64Array.from(hull, (i) => X[index[i]]);
Y = Float64Array.from(hull, (i) => Y[index[i]]);
V = Array.from(hull, (i) => V[index[i]]);
const n = X.length;
const rays = Array.from({length: n}, (_, j) => ray(j, X, Y));
let k = 0;
for (let y = 0; y < height; ++y) {
const yp = y + 0.5;
for (let x = 0; x < width; ++x) {
const i = x + width * y;
if (!S[i]) {
const xp = x + 0.5;
for (let l = 0; l < n; ++l) {
const j = (n + k + (l % 2 ? (l + 1) / 2 : -l / 2)) % n;
if (rays[j](xp, yp)) {
const t = segmentProject(X.at(j - 1), Y.at(j - 1), X[j], Y[j], xp, yp);
W[i] = mix(V.at(j - 1), t, V[j], 1 - t, V[j], 0, x, y);
k = j;
break;
}
}
}
}
}
}
// Projects a point p = [x, y] onto the line segment [p1, p2], returning the
// projected coordinates p’ as t in [0, 1] with p’ = t p1 + (1 - t) p2.
function segmentProject(x1, y1, x2, y2, x, y) {
const dx = x2 - x1;
const dy = y2 - y1;
const a = dx * (x2 - x) + dy * (y2 - y);
const b = dx * (x - x1) + dy * (y - y1);
return a > 0 && b > 0 ? a / (a + b) : +(a > b);
}
function cross(xa, ya, xb, yb) {
return xa * yb - xb * ya;
}
function ray(j, X, Y) {
const n = X.length;
const xc = X.at(j - 2);
const yc = Y.at(j - 2);
const xa = X.at(j - 1);
const ya = Y.at(j - 1);
const xb = X[j];
const yb = Y[j];
const xd = X.at(j + 1 - n);
const yd = Y.at(j + 1 - n);
const dxab = xa - xb;
const dyab = ya - yb;
const dxca = xc - xa;
const dyca = yc - ya;
const dxbd = xb - xd;
const dybd = yb - yd;
const hab = Math.hypot(dxab, dyab);
const hca = Math.hypot(dxca, dyca);
const hbd = Math.hypot(dxbd, dybd);
return (x, y) => {
const dxa = x - xa;
const dya = y - ya;
const dxb = x - xb;
const dyb = y - yb;
return (
cross(dxa, dya, dxb, dyb) > -1e-6 &&
cross(dxa, dya, dxab, dyab) * hca - cross(dxa, dya, dxca, dyca) * hab > -1e-6 &&
cross(dxb, dyb, dxbd, dybd) * hab - cross(dxb, dyb, dxab, dyab) * hbd <= 0
);
};
}
export function interpolateNearest(index, width, height, X, Y, V) {
const W = new V.constructor(width * height);
const delaunay = Delaunay.from(
index,
(i) => X[i],
(i) => Y[i]
);
// memoization of delaunay.find for the line start (iy) and pixel (ix)
let iy, ix;
for (let y = 0.5, k = 0; y < height; ++y) {
ix = iy;
for (let x = 0.5; x < width; ++x, ++k) {
ix = delaunay.find(x, y, ix);
if (x === 0.5) iy = ix;
W[k] = V[index[ix]];
}
}
return W;
}
// https://observablehq.com/@observablehq/walk-on-spheres-precision
export function interpolatorRandomWalk({random = randomLcg(42), minDistance = 0.5, maxSteps = 2} = {}) {
return (index, width, height, X, Y, V) => {
const W = new V.constructor(width * height);
const delaunay = Delaunay.from(
index,
(i) => X[i],
(i) => Y[i]
);
// memoization of delaunay.find for the line start (iy), pixel (ix), and wos step (iw)
let iy, ix, iw;
for (let y = 0.5, k = 0; y < height; ++y) {
ix = iy;
for (let x = 0.5; x < width; ++x, ++k) {
let cx = x;
let cy = y;
iw = ix = delaunay.find(cx, cy, ix);
if (x === 0.5) iy = ix;
let distance; // distance to closest sample
let step = 0; // count of steps for this walk
while ((distance = Math.hypot(X[index[iw]] - cx, Y[index[iw]] - cy)) > minDistance && step < maxSteps) {
const angle = random(x, y, step) * 2 * Math.PI;
cx += Math.cos(angle) * distance;
cy += Math.sin(angle) * distance;
iw = delaunay.find(cx, cy, iw);
++step;
}
W[k] = V[index[iw]];
}
}
return W;
};
}
function blend(a, ca, b, cb, c, cc) {
return ca * a + cb * b + cc * c;
}
function pick(random) {
return (a, ca, b, cb, c, cc, x, y) => {
const u = random(x, y);
return u < ca ? a : u < ca + cb ? b : c;
};
}
function mixer(F, random) {
return isNumeric(F) || isTemporal(F) ? blend : pick(random);
}
function denseX(x1, x2, width) {
return {
transform(data) {
const n = data.length;
const X = new Float64Array(n);
const kx = (x2 - x1) / width;
const x0 = x1 + kx / 2;
for (let i = 0; i < n; ++i) X[i] = (i % width) * kx + x0;
return X;
}
};
}
function denseY(y1, y2, width, height) {
return {
transform(data) {
const n = data.length;
const Y = new Float64Array(n);
const ky = (y2 - y1) / height;
const y0 = y1 + ky / 2;
for (let i = 0; i < n; ++i) Y[i] = (Math.floor(i / width) % height) * ky + y0;
return Y;
}
};
}