forked from justmarkham/DAT3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
03_base_python_class.py
455 lines (347 loc) · 13 KB
/
03_base_python_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
"""
====================================================================
B A S E P Y T H O N
====================================================================
"""
# Questions to get started:
# Why should data scientists learn to program?
# Why learn Python specifically?
# What is your programming background? In Python?
# ==================================================================
# D A T A T Y P E S
# ==================================================================
# We'll go over five data types here (all are objects)
# Integer
type(2)
# Float (with the decimal)
type(2.7)
type(2.7e+2)
# Long (more than 10 digits, or L)
type(27L)
# String (either "..." or '...' may be used)
type("Data Science")
type('Data Science')
# Boolean
type(False)
# You can check datatypes
isinstance(1, float)
isinstance(1.0, int)
isinstance(2L, long)
isinstance("Data Science", str)
isinstance(False, bool)
# You can convert between datatypes
int(1.0)
float(1)
int("1")
int(54L)
# ==================================================================
# O P E R A T I O N S
# ==================================================================
var1 = 3
var2 = 10
# Boolean Operators
var1 == var2 # EQUAL TO
var1 < var2 # LESS THAN
var1 <= var2 # LESS THAN OR EQUAL TO
(var1 == 1) | (var2 == 10) # OR
(var1 == 1) or (var2 == 10) # OR (alternative)
(var1 == 1) & (var2 == 10) # AND
(var1 == 1) and (var2 == 10) # AND (alternative)
# Addition
10 + 3
# Subtraction
10 - 3
# Multiplication
10 * 3
# Division
10 / 3 # returns 3 in Python 2.x
10 / 3.0 # returns 3.333...
10 / float(3) # returns 3.333...
# Powers
10**3
# Remainders
10 % 3
# ==================================================================
# L I S T S : Mutable, Ordered Data Structures
# ==================================================================
# Lists are denoted by []
lis = [0, 1, 2, 3, 4, 5, 6, 7]
type(lis)
# Specific elemnents can be accessed using [] as well
lis[4] # Returns the 5th element
# Multiple elements can be accessed using the ':' operator
# Returns the 1st number through one shy of the 2nd number
lis[0:4]
# Returns the 5th element through the last element
lis[4:]
# Returns the first through the 4th element
lis[:4]
# Returns the last element
lis[-1]
# Returns the last n elements
lis[-3:]
# List elements are mutable
lis[4] = 100
lis[4:6] = [500, 600]
# The type of list elements is also mutable
lis[0:3] = ["Guido", "Van", "Rossum"]
lis[3:7] = ["created", "python,", "programming", "language,"]
# Check if an element is in a list
"Van" in lis # returns True
# Elements can be removed with the .remove method
lis.remove(7)
# Elements can be added to the end of a list using the .append method
lis.append("in 1991")
# Elements can be inserted into the middle of a list
lis.insert(5,"a")
# Lists can be nested within each other
# List of three lists
lis = [[1,2,3],[4,5,6],[7,8,9]]
# Lets try to access a particular number, say 6
lis[1][2]
# A list within a list within a list within a list within a list
lis = [1,2,[3,4,[5,6,[7,8]]]]
# ==================================================================
# D I C T: Unordered data structures with key-value pairs
# Keys must be unique
# ==================================================================
dct = {"Name": "Monty Python and the Flying Circus",
"Description": "British Comedy Group",
"Known for": ["Irreverant Comedy", "Monty Python and the Holy Grail"],
"Years Active" : 17,
"# Members": 6}
# Access an element within the list
dct["Years Active"]
# Add a new item to a list within the dictionary
dct["Known for"].append("Influencing SNL")
# Returns the keys
dct.keys()
# Returns the values
dct.values()
# Quiz: Create a dictionary within the 'dct' dictionary containing your
# own favorite Monty Python influences
dct["Influence"] = { "Asteroids": [13681, 9618, 9619, 9620, 9621, 9622],
"Technology": ["Spam", "Python", "IDLE (for Eric Idle)"],
"Food": ["Monty Python's Holy Ale", "Vermonty Python"]}
# Accessing a nested dictionary item
dct["Influence"]["Technology"]
# ==================================================================
# S T R I N G S
# ==================================================================
# Example strings
s1 = "What is the air-speed velocity"
s2 = "of an unladen swallow?"
# Concatenate two strings
s = s1 + " " + s2
s = " ".join([s1, s2])
# Replace an item within a string
s = s.replace("unladen", "unladen African")
# Return the index of the first instance of a string
s.find("swallow")
# Slice the string
s[-8:]
s[s.find("swallow"):]
# Change to upper and lower case
"swallow".upper()
"SWALLOW".lower()
"swallow".capitalize()
# Count the instances of a substring
s.count(" ")
# Split up a string (returns a list)
s.split()
s.split(" ") # Same thing
# ==================================================================
# F U N C T I O N S
# ==================================================================
# Wes McKinney: Functions are the primary and most important method of code
# organization and reuse in Python. There may not be such a thing as too many
# functions. In fact, I would argue that most programmers doing data analysis
# don't write enough functions! (p. 420 of Python for Data Analysis)
# Range returns a list with a defined start/stop point (default start is 0)
range(1, 10, 2)
range(5, 10)
range(10)
# Type identifies the object type you pass it
type(3)
# Isinstance checks for the variable type
isinstance(4, str)
# Len returns the length of an object
len("Holy Grail")
len([3, 4, 5, 1])
# User-defined functions start with the 'def' keyword
# They may take inputs as arguments, and may return an output
def my_function(x, y):
return x - y
# These are equivalent
my_function(100, 10)
my_function(x=100, y=10)
my_function(y=10, x=100)
# This is not equivalent
my_function(10, 100)
# What if we want to make one of our arguments optional?
def my_function_optional(x, y = 10):
return x - y
# These are equivalent
my_function_optional(100, 10)
my_function_optional(100)
# ==================================================================
# I F - S T A T E M E N T S & L O O P I N G
# ==================================================================
var1 = 10
# If elif else statement
# Whitespace is important
if var1 > 5:
print "More than 5"
elif var1 < 5:
print "Less than 5"
else:
print "5"
# While statement
while var1 < 10:
print var1
var1 += 1 # This is commonly used shorthand for var1 = var1 + 1
# For loop
for i in range(0,10,2):
print i**2
# For loop in the list
fruits = ['apple', 'banana', 'cherry', 'plum']
for i in range(len(fruits)):
print fruits[i].upper()
# Better way
for fruit in fruits:
print fruit.upper()
# ==================================================================
# I M P O R T
# ==================================================================
# Import a package (collection of (sub)modules)
import sklearn
clf = sklearn.tree.DecisionTreeClassifier()
# Import a specific (sub)module within the sklearn package
from sklearn import tree
clf = tree.DecisionTreeClassifier()
# Import the DecisionTreeClassifer class within the sklearn.tree submodule
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier()
# ==================================================================
# L I S T C O M P R E H E N S I O N
# ==================================================================
# List comprehension is a popular construct in the python programming language:
# Takes an iterable as the input, performs a function on each element of that
# input, and returns a list
# Say you have a list and you want to do something to every element,
# or a subset of this list
numbers = [100, 45, 132.0, 1, 0, 0.3, 0.5, 1, 3]
# Long form using a for loop
lis1 = []
for x in numbers:
if isinstance(x,int):
lis1.append(5*x)
# Short form using list comprehension
lis2 = [x * 5 for x in numbers if isinstance(x, int)]
# ==================================================================
# E X E R C I S E S
# ==================================================================
# EXERCISE #1
# Create a function that acts as a simple calulator
# If the operation is not specified, default to addition
# If the operation is misspecified, return an prompt message
# Ex: my_calc(4,5,"multiply") returns 20
# Ex: my_calc(3,5) returns 8
# Ex: my_calc(1, 2, "something") returns error message
# EXERCISE #2
# Given a list of numbers, return a list where
# all adjacent duplicate elements have been reduced to a single element.
# Ex: [1, 2, 2, 3, 2] returns [1, 2, 3, 2].
# You may create a new list or modify the passed in list.
# Bonus: Remove all duplicate values (adjacent or not)
# Ex: [1, 2, 2, 3, 2] returns [1, 2, 3]
# EXERCISE #3
# Take a string, change it into a list and capitalize all words
# that are more than 3 characters long using list comprehension
# Ex: "Strange women lying in ponds is no basis for government"
# Returns: ['Strange', 'Women', 'Lying', 'Ponds', 'Basis', 'Government']
# Bonus: Same as before, but output should include all words
# Ex: "Strange women lying in ponds is no basis for government"
# Returns: ['Strange', 'Women', 'Lying', 'in', 'Ponds', 'is',
# 'no', 'Basis', 'for', 'Government']
"""
====================================================================
====================================================================
B O N U S C O N T E N T
====================================================================
====================================================================
"""
# ==================================================================
# O P T I O N S F O R C O D E E X E C U T I O N
# ==================================================================
"""
Command line
- Type: 'python myscript.py' to run a script in that directory
Python interpreter
- Type 'python' into the CLI to enter the interpreter
iPython interpreter
- Type 'IPython' into the CLI to enter the iPython interpreter
- Type: run 03_simple.py to run the a script in that directory
- iPython interpreter has some features, for starters, it looks nicer
iPython Notebook
- Type 'IPython notebook' into the CLI to open the iPython notebook
- This is a browser based interpreter that also features in-line plotting
- Nice as a stand-alone and also for teaching
- Have heard it doesn't do very well with version control, for that
Spyder IDE
- Nice because allows you to save your code
- Works nicely with version control
- Allows you to execute parts of your code
"""
# ==================================================================
# T H E W O R K I N G D I R E C T O R Y
# ==================================================================
import os
# Check the current working directory
os.getcwd()
# Change the current directory
os.chdir('C:\\Python27')
# Change from the current directory
os.chdir('Scripts')
# List out the files in the current directory
for i in os.listdir(os.getcwd()):
print i
# ==================================================================
# D E S I G N P H I L O S O P H Y
# ==================================================================
import this
"""
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
"""
# ==================================================================
# T U P L E S --> Immutable data structures
# ==================================================================
# Tuples are denoted by ()
tup = ("Monty Python and the Flying Circus", 1969, "British Comedy Group")
type(tup)
# Elements can be accessed in the same way as lists
tup[0]
# You can't change an element within a tuple
tup[0] = "Monty Python"
# Tuples can be "unpacked" by the following
name, year, description = tup
# Tuples can be nested within one another
tup = ("Monty Python and the Flying Circus", (1969, "British Comedy Group"))