forked from justmarkham/DAT3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path14_nlp_class.py
265 lines (205 loc) · 7.49 KB
/
14_nlp_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
'''
CLASS: Natural Language Processing
Adapted from: https://github.com/charlieg/A-Smattering-of-NLP-in-Python
What is NLP?
- Using computers to process (analyze, understand, generate) natural human languages
Why NLP?
- Most knowledge created by humans is unstructured text
- Need some way to make sense of it
- Enables quantitative analysis of text data
Why NLTK?
- High-quality, reusable NLP functionality
'''
import nltk
nltk.download()
'''
Tokenization
What: Separate text into units such as sentences or words
Why: Gives structure to previously unstructured text
Notes: Relatively easy with English language text, not easy with some languages
'''
# "corpus" = collection of documents
# "corpora" = plural form of corpus
from nltk.corpus import webtext
webtext.fileids()
# wine reviews corpus
text = webtext.raw('wine.txt')
text[:500]
# tokenize into sentences
sentences = [sent for sent in nltk.sent_tokenize(text)]
sentences[:10]
# tokenize into words
tokens = [word for word in nltk.word_tokenize(text)]
tokens[:100]
# only keep tokens that start with a letter (using regular expressions)
import re
clean_tokens = [token for token in tokens if re.search(r'^[a-zA-Z]+', token)]
clean_tokens[:100]
# count the tokens
from collections import Counter
c = Counter(clean_tokens)
c.most_common(25) # mixed case
sorted(c.items())[:25] # counts similar words separately
for item in sorted(c.items())[:25]:
print item[0], item[1]
'''
Stemming
What: Reduce a word to its base/stem/root form
Why: Often makes sense to treat multiple word forms the same way
Notes: Uses a "simple" and fast rule-based approach
Output can be undesirable for irregular words
Stemmed words are usually not shown to users (used for analysis/indexing)
Some search engines treat words with the same stem as synonyms
'''
from nltk.stem.snowball import SnowballStemmer
stemmer = SnowballStemmer('english')
# example stemming
stemmer.stem('charge')
stemmer.stem('charging')
stemmer.stem('charged')
# stem the tokens
stemmed_tokens = [stemmer.stem(t) for t in clean_tokens]
# count the stemmed tokens
c = Counter(stemmed_tokens)
c.most_common(25) # all lowercase
sorted(c.items())[:25] # some are strange
'''
Lemmatization
What: Derive the canonical form ('lemma') of a word
Why: Can be better than stemming
Notes: Uses a dictionary-based approach (slower than stemming)
'''
lemmatizer = nltk.WordNetLemmatizer()
# compare stemmer to lemmatizer
temp_sent = 'Several women told me I have lying eyes'
[stemmer.stem(t) for t in nltk.word_tokenize(temp_sent)]
[lemmatizer.lemmatize(t) for t in nltk.word_tokenize(temp_sent)]
'''
Stopword Removal
What: Remove common words that will likely appear in any text
Why: They don't tell you much about your text
'''
# most of top 25 stemmed tokens are "worthless"
c.most_common(25)
# view the list of stopwords
stopwords = nltk.corpus.stopwords.words('english')
sorted(stopwords)
# stem the stopwords
stemmed_stops = [stemmer.stem(t) for t in stopwords]
# remove stopwords from stemmed tokens
stemmed_tokens_no_stop = [stemmer.stem(t) for t in stemmed_tokens if t not in stemmed_stops]
c = Counter(stemmed_tokens_no_stop)
c.most_common(25)
'''
Named Entity Recognition
What: Automatically extract the names of people, places, organizations, etc.
Why: Can help you to identify "important" words
Notes: Training NER classifier requires a lot of annotated training data
Should be trained on data relevant to your task
Stanford NER classifier is the "gold standard"
'''
def extract_entities(text):
entities = []
# tokenize into sentences
for sentence in nltk.sent_tokenize(text):
# tokenize sentences into words
# add part-of-speech tags
# use NLTK's NER classifier
chunks = nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sentence)))
# parse the results
entities.extend([chunk for chunk in chunks if hasattr(chunk, 'label')])
return entities
for entity in extract_entities('Kevin and Josiah are instructors for General Assembly in Washington, D.C.'):
print '[' + entity.label() + '] ' + ' '.join(c[0] for c in entity.leaves())
'''
Term Frequency - Inverse Document Frequency (TF-IDF)
What: Computes "relative frequency" that a word appears in a document
compared to its frequency across all documents
Why: More useful than "term frequency" for identifying "important" words in
each document (high frequency in that document, low frequency in
other documents)
Notes: Used for search engine scoring, text summarization, document clustering
'''
sample = ['Bob likes sports', 'Bob hates sports', 'Bob likes likes trees']
from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer()
vect.fit_transform(sample).toarray()
vect.get_feature_names()
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer()
tfidf.fit_transform(sample).toarray()
tfidf.get_feature_names()
'''
EXAMPLE: Automatically summarize a document
'''
# corpus of 2000 movie reviews
from nltk.corpus import movie_reviews
reviews = [movie_reviews.raw(filename) for filename in movie_reviews.fileids()]
# create document-term matrix
tfidf = TfidfVectorizer(stop_words='english')
dtm = tfidf.fit_transform(reviews)
features = tfidf.get_feature_names()
import numpy as np
# find the most and least "interesting" sentences in a randomly selected review
def summarize():
# choose a random movie review
review_id = np.random.randint(0, len(reviews))
review_text = reviews[review_id]
# we are going to score each sentence in the review for "interesting-ness"
sent_scores = []
# tokenize document into sentences
for sentence in nltk.sent_tokenize(review_text):
# exclude short sentences
if len(sentence) > 6:
score = 0
token_count = 0
# tokenize sentence into words
tokens = nltk.word_tokenize(sentence)
# compute sentence "score" by summing TFIDF for each word
for token in tokens:
if token in features:
score += dtm[review_id, features.index(token)]
token_count += 1
# divide score by number of tokens
sent_scores.append((score / float(token_count + 1), sentence))
# lowest scoring sentences
print '\nLOWEST:\n'
for sent_score in sorted(sent_scores)[:3]:
print sent_score[1]
# highest scoring sentences
print '\nHIGHEST:\n'
for sent_score in sorted(sent_scores, reverse=True)[:3]:
print sent_score[1]
# try it out!
summarize()
'''
TextBlob Demo: "Simplified Text Processing"
Installation: pip install textblob
'''
from textblob import TextBlob, Word
# identify words and noun phrases
blob = TextBlob('Kevin and Josiah are instructors for General Assembly in Washington, D.C.')
blob.words
blob.noun_phrases
# sentiment analysis
blob = TextBlob('I hate this horrible movie. This movie is not very good.')
blob.sentences
blob.sentiment.polarity
[sent.sentiment.polarity for sent in blob.sentences]
# singularize and pluralize
blob = TextBlob('Put away the dishes.')
[word.singularize() for word in blob.words]
[word.pluralize() for word in blob.words]
# spelling correction
blob = TextBlob('15 minuets late')
blob.correct()
# spellcheck
Word('parot').spellcheck()
# definitions
Word('bank').define()
Word('bank').define('v')
# translation and language identification
blob = TextBlob('Welcome to the classroom.')
blob.translate(to='es')
blob = TextBlob('Hola amigos')
blob.detect_language()