We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我正在使用官方支持的任务/模型/数据集进行评估。
大部分数据集在对数据进行复制增广时使用类似data_list = data * n_repeats的语句对数据复制多份,这样得到的data_list是浅拷贝,改动其中一个元素会同步改动其他复制出来的元素。以下是一个例子
data_list = data * n_repeats
data_list
data_dict_list = [ { "value": 1}, ] data_dict_list = data_dict_list * 4 # 改动第一个元素的“value”值 data_dict_list[0]["value"] = 2 print(data_dict_list) # 打印结果后所有元素的"value"值均被改变 # --> [{'value': 2}, {'value': 2}, {'value': 2}, {'value': 2}]
比如gpqa数据集中直接使用 data_list = data * n_repeats 对数据进行复制增广后,下面的扰乱选项会导致只有1/4的数据正确评测,其余3/4的数据正确答案与选项错位,最终结果是模型在3/4的数据上等价于随机选答案
opencompass/opencompass/datasets/gpqa.py
Line 88 in 35ec307
一种正确的方式是直接使用copy库的deepcopy
data_repeats = [copy.deepcopy(item) for item in data for _ in range(n_repeats)]
见上
No response
The text was updated successfully, but these errors were encountered:
Thanks for the report, we will check this issue.
Sorry, something went wrong.
acylam
No branches or pull requests
先决条件
问题类型
我正在使用官方支持的任务/模型/数据集进行评估。
环境
大部分数据集在对数据进行复制增广时使用类似
data_list = data * n_repeats
的语句对数据复制多份,这样得到的data_list
是浅拷贝,改动其中一个元素会同步改动其他复制出来的元素。以下是一个例子比如gpqa数据集中直接使用
data_list = data * n_repeats
对数据进行复制增广后,下面的扰乱选项会导致只有1/4的数据正确评测,其余3/4的数据正确答案与选项错位,最终结果是模型在3/4的数据上等价于随机选答案opencompass/opencompass/datasets/gpqa.py
Line 88 in 35ec307
一种正确的方式是直接使用copy库的deepcopy
重现问题 - 代码/配置示例
见上
重现问题 - 命令或脚本
见上
重现问题 - 错误信息
见上
其他信息
No response
The text was updated successfully, but these errors were encountered: