Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug] 部分数据集中对question进行增广时使用浅拷贝会导致选项与答案错位 #1845

Open
2 tasks done
QuanWanLear opened this issue Jan 23, 2025 · 1 comment
Assignees

Comments

@QuanWanLear
Copy link

先决条件

问题类型

我正在使用官方支持的任务/模型/数据集进行评估。

环境

大部分数据集在对数据进行复制增广时使用类似data_list = data * n_repeats的语句对数据复制多份,这样得到的data_list是浅拷贝,改动其中一个元素会同步改动其他复制出来的元素。以下是一个例子

data_dict_list = [
    { "value": 1},
]

data_dict_list = data_dict_list * 4

# 改动第一个元素的“value”值
data_dict_list[0]["value"] = 2

print(data_dict_list)
# 打印结果后所有元素的"value"值均被改变
# --> [{'value': 2}, {'value': 2}, {'value': 2}, {'value': 2}]

比如gpqa数据集中直接使用 data_list = data * n_repeats 对数据进行复制增广后,下面的扰乱选项会导致只有1/4的数据正确评测,其余3/4的数据正确答案与选项错位,最终结果是模型在3/4的数据上等价于随机选答案

data_list = data * n_repeats

一种正确的方式是直接使用copy库的deepcopy

data_repeats = [copy.deepcopy(item) for item in data for _ in range(n_repeats)]

重现问题 - 代码/配置示例

见上

重现问题 - 命令或脚本

见上

重现问题 - 错误信息

见上

其他信息

No response

@tonysy
Copy link
Collaborator

tonysy commented Jan 23, 2025

Thanks for the report, we will check this issue.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants