-
Notifications
You must be signed in to change notification settings - Fork 0
/
isl_farkas.c
966 lines (852 loc) · 27.1 KB
/
isl_farkas.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
/*
* Copyright 2010 INRIA Saclay
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
*/
#include <isl_map_private.h>
#include <isl/set.h>
#include <isl_space_private.h>
#include <isl_seq.h>
#include <isl_aff_private.h>
#include <isl_mat_private.h>
#include <isl_factorization.h>
/*
* Let C be a cone and define
*
* C' := { y | forall x in C : y x >= 0 }
*
* C' contains the coefficients of all linear constraints
* that are valid for C.
* Furthermore, C'' = C.
*
* If C is defined as { x | A x >= 0 }
* then any element in C' must be a non-negative combination
* of the rows of A, i.e., y = t A with t >= 0. That is,
*
* C' = { y | exists t >= 0 : y = t A }
*
* If any of the rows in A actually represents an equality, then
* also negative combinations of this row are allowed and so the
* non-negativity constraint on the corresponding element of t
* can be dropped.
*
* A polyhedron P = { x | b + A x >= 0 } can be represented
* in homogeneous coordinates by the cone
* C = { [z,x] | b z + A x >= and z >= 0 }
* The valid linear constraints on C correspond to the valid affine
* constraints on P.
* This is essentially Farkas' lemma.
*
* Since
* [ 1 0 ]
* [ w y ] = [t_0 t] [ b A ]
*
* we have
*
* C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b }
* or
*
* C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 }
*
* In practice, we introduce an extra variable (w), shifting all
* other variables to the right, and an extra inequality
* (w - t b >= 0) corresponding to the positivity constraint on
* the homogeneous coordinate.
*
* When going back from coefficients to solutions, we immediately
* plug in 1 for z, which corresponds to shifting all variables
* to the left, with the leftmost ending up in the constant position.
*/
/* Add the given prefix to all named isl_dim_set dimensions in "space".
*/
static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *space,
const char *prefix)
{
int i;
isl_ctx *ctx;
isl_size nvar;
size_t prefix_len = strlen(prefix);
if (!space)
return NULL;
ctx = isl_space_get_ctx(space);
nvar = isl_space_dim(space, isl_dim_set);
if (nvar < 0)
return isl_space_free(space);
for (i = 0; i < nvar; ++i) {
const char *name;
char *prefix_name;
name = isl_space_get_dim_name(space, isl_dim_set, i);
if (!name)
continue;
prefix_name = isl_alloc_array(ctx, char,
prefix_len + strlen(name) + 1);
if (!prefix_name)
goto error;
memcpy(prefix_name, prefix, prefix_len);
strcpy(prefix_name + prefix_len, name);
space = isl_space_set_dim_name(space,
isl_dim_set, i, prefix_name);
free(prefix_name);
}
return space;
error:
isl_space_free(space);
return NULL;
}
/* Given a dimension specification of the solutions space, construct
* a dimension specification for the space of coefficients.
*
* In particular transform
*
* [params] -> { S }
*
* to
*
* { coefficients[[cst, params] -> S] }
*
* and prefix each dimension name with "c_".
*/
static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *space)
{
isl_space *space_param;
isl_size nvar;
isl_size nparam;
nvar = isl_space_dim(space, isl_dim_set);
nparam = isl_space_dim(space, isl_dim_param);
if (nvar < 0 || nparam < 0)
return isl_space_free(space);
space_param = isl_space_copy(space);
space_param = isl_space_drop_dims(space_param, isl_dim_set, 0, nvar);
space_param = isl_space_move_dims(space_param, isl_dim_set, 0,
isl_dim_param, 0, nparam);
space_param = isl_space_prefix(space_param, "c_");
space_param = isl_space_insert_dims(space_param, isl_dim_set, 0, 1);
space_param = isl_space_set_dim_name(space_param,
isl_dim_set, 0, "c_cst");
space = isl_space_drop_dims(space, isl_dim_param, 0, nparam);
space = isl_space_prefix(space, "c_");
space = isl_space_join(isl_space_from_domain(space_param),
isl_space_from_range(space));
space = isl_space_wrap(space);
space = isl_space_set_tuple_name(space, isl_dim_set, "coefficients");
return space;
}
/* Drop the given prefix from all named dimensions of type "type" in "space".
*/
static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *space,
enum isl_dim_type type, const char *prefix)
{
int i;
isl_size n;
size_t prefix_len = strlen(prefix);
n = isl_space_dim(space, type);
if (n < 0)
return isl_space_free(space);
for (i = 0; i < n; ++i) {
const char *name;
name = isl_space_get_dim_name(space, type, i);
if (!name)
continue;
if (strncmp(name, prefix, prefix_len))
continue;
space = isl_space_set_dim_name(space,
type, i, name + prefix_len);
}
return space;
}
/* Given a dimension specification of the space of coefficients, construct
* a dimension specification for the space of solutions.
*
* In particular transform
*
* { coefficients[[cst, params] -> S] }
*
* to
*
* [params] -> { S }
*
* and drop the "c_" prefix from the dimension names.
*/
static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *space)
{
isl_size nparam;
space = isl_space_unwrap(space);
space = isl_space_drop_dims(space, isl_dim_in, 0, 1);
space = isl_space_unprefix(space, isl_dim_in, "c_");
space = isl_space_unprefix(space, isl_dim_out, "c_");
nparam = isl_space_dim(space, isl_dim_in);
if (nparam < 0)
return isl_space_free(space);
space = isl_space_move_dims(space,
isl_dim_param, 0, isl_dim_in, 0, nparam);
space = isl_space_range(space);
return space;
}
/* Return the rational universe basic set in the given space.
*/
static __isl_give isl_basic_set *rational_universe(__isl_take isl_space *space)
{
isl_basic_set *bset;
bset = isl_basic_set_universe(space);
bset = isl_basic_set_set_rational(bset);
return bset;
}
/* Compute the dual of "bset" by applying Farkas' lemma.
* As explained above, we add an extra dimension to represent
* the coefficient of the constant term when going from solutions
* to coefficients (shift == 1) and we drop the extra dimension when going
* in the opposite direction (shift == -1).
* The dual can be created in an arbitrary space.
* The caller is responsible for putting the result in the appropriate space.
*
* If "bset" is (obviously) empty, then the way this emptiness
* is represented by the constraints does not allow for the application
* of the standard farkas algorithm. We therefore handle this case
* specifically and return the universe basic set.
*/
static __isl_give isl_basic_set *farkas(__isl_take isl_basic_set *bset,
int shift)
{
int i, j, k;
isl_ctx *ctx;
isl_space *space;
isl_basic_set *dual = NULL;
isl_size total;
total = isl_basic_set_dim(bset, isl_dim_all);
if (total < 0)
return isl_basic_set_free(bset);
ctx = isl_basic_set_get_ctx(bset);
space = isl_space_set_alloc(ctx, 0, total + shift);
if (isl_basic_set_plain_is_empty(bset)) {
isl_basic_set_free(bset);
return rational_universe(space);
}
dual = isl_basic_set_alloc_space(space, bset->n_eq + bset->n_ineq,
total, bset->n_ineq + (shift > 0));
dual = isl_basic_set_set_rational(dual);
for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) {
k = isl_basic_set_alloc_div(dual);
if (k < 0)
goto error;
isl_int_set_si(dual->div[k][0], 0);
}
for (i = 0; i < total; ++i) {
k = isl_basic_set_alloc_equality(dual);
if (k < 0)
goto error;
isl_seq_clr(dual->eq[k], 1 + shift + total);
isl_int_set_si(dual->eq[k][1 + shift + i], -1);
for (j = 0; j < bset->n_eq; ++j)
isl_int_set(dual->eq[k][1 + shift + total + j],
bset->eq[j][1 + i]);
for (j = 0; j < bset->n_ineq; ++j)
isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j],
bset->ineq[j][1 + i]);
}
for (i = 0; i < bset->n_ineq; ++i) {
k = isl_basic_set_alloc_inequality(dual);
if (k < 0)
goto error;
isl_seq_clr(dual->ineq[k],
1 + shift + total + bset->n_eq + bset->n_ineq);
isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1);
}
if (shift > 0) {
k = isl_basic_set_alloc_inequality(dual);
if (k < 0)
goto error;
isl_seq_clr(dual->ineq[k], 2 + total);
isl_int_set_si(dual->ineq[k][1], 1);
for (j = 0; j < bset->n_eq; ++j)
isl_int_neg(dual->ineq[k][2 + total + j],
bset->eq[j][0]);
for (j = 0; j < bset->n_ineq; ++j)
isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j],
bset->ineq[j][0]);
}
dual = isl_basic_set_remove_divs(dual);
dual = isl_basic_set_simplify(dual);
dual = isl_basic_set_finalize(dual);
isl_basic_set_free(bset);
return dual;
error:
isl_basic_set_free(bset);
isl_basic_set_free(dual);
return NULL;
}
/* Construct a basic set containing the tuples of coefficients of all
* valid affine constraints on the given basic set, ignoring
* the space of input and output and without any further decomposition.
*/
static __isl_give isl_basic_set *isl_basic_set_coefficients_base(
__isl_take isl_basic_set *bset)
{
return farkas(bset, 1);
}
/* Return the inverse mapping of "morph".
*/
static __isl_give isl_mat *peek_inv(__isl_keep isl_morph *morph)
{
return morph ? morph->inv : NULL;
}
/* Return a copy of the inverse mapping of "morph".
*/
static __isl_give isl_mat *get_inv(__isl_keep isl_morph *morph)
{
return isl_mat_copy(peek_inv(morph));
}
/* Information about a single factor within isl_basic_set_coefficients_product.
*
* "start" is the position of the first coefficient (beyond
* the one corresponding to the constant term) in this factor.
* "dim" is the number of coefficients (other than
* the one corresponding to the constant term) in this factor.
* "n_line" is the number of lines in "coeff".
* "n_ray" is the number of rays (other than lines) in "coeff".
* "n_vertex" is the number of vertices in "coeff".
*
* While iterating over the vertices,
* "pos" represents the inequality constraint corresponding
* to the current vertex.
*/
struct isl_coefficients_factor_data {
isl_basic_set *coeff;
int start;
int dim;
int n_line;
int n_ray;
int n_vertex;
int pos;
};
/* Internal data structure for isl_basic_set_coefficients_product.
* "n" is the number of factors in the factorization.
* "pos" is the next factor that will be considered.
* "start_next" is the position of the first coefficient (beyond
* the one corresponding to the constant term) in the next factor.
* "factors" contains information about the individual "n" factors.
*/
struct isl_coefficients_product_data {
int n;
int pos;
int start_next;
struct isl_coefficients_factor_data *factors;
};
/* Initialize the internal data structure for
* isl_basic_set_coefficients_product.
*/
static isl_stat isl_coefficients_product_data_init(isl_ctx *ctx,
struct isl_coefficients_product_data *data, int n)
{
data->n = n;
data->pos = 0;
data->start_next = 0;
data->factors = isl_calloc_array(ctx,
struct isl_coefficients_factor_data, n);
if (!data->factors)
return isl_stat_error;
return isl_stat_ok;
}
/* Free all memory allocated in "data".
*/
static void isl_coefficients_product_data_clear(
struct isl_coefficients_product_data *data)
{
int i;
if (data->factors) {
for (i = 0; i < data->n; ++i) {
isl_basic_set_free(data->factors[i].coeff);
}
}
free(data->factors);
}
/* Does inequality "ineq" in the (dual) basic set "bset" represent a ray?
* In particular, does it have a zero denominator
* (i.e., a zero coefficient for the constant term)?
*/
static int is_ray(__isl_keep isl_basic_set *bset, int ineq)
{
return isl_int_is_zero(bset->ineq[ineq][1]);
}
/* isl_factorizer_every_factor_basic_set callback that
* constructs a basic set containing the tuples of coefficients of all
* valid affine constraints on the factor "bset" and
* extracts further information that will be used
* when combining the results over the different factors.
*/
static isl_bool isl_basic_set_coefficients_factor(
__isl_keep isl_basic_set *bset, void *user)
{
struct isl_coefficients_product_data *data = user;
isl_basic_set *coeff;
isl_size n_eq, n_ineq, dim;
int i, n_ray, n_vertex;
coeff = isl_basic_set_coefficients_base(isl_basic_set_copy(bset));
data->factors[data->pos].coeff = coeff;
if (!coeff)
return isl_bool_error;
dim = isl_basic_set_dim(bset, isl_dim_set);
n_eq = isl_basic_set_n_equality(coeff);
n_ineq = isl_basic_set_n_inequality(coeff);
if (dim < 0 || n_eq < 0 || n_ineq < 0)
return isl_bool_error;
n_ray = n_vertex = 0;
for (i = 0; i < n_ineq; ++i) {
if (is_ray(coeff, i))
n_ray++;
else
n_vertex++;
}
data->factors[data->pos].start = data->start_next;
data->factors[data->pos].dim = dim;
data->factors[data->pos].n_line = n_eq;
data->factors[data->pos].n_ray = n_ray;
data->factors[data->pos].n_vertex = n_vertex;
data->pos++;
data->start_next += dim;
return isl_bool_true;
}
/* Clear an entry in the product, given that there is a "total" number
* of coefficients (other than that of the constant term).
*/
static void clear_entry(isl_int *entry, int total)
{
isl_seq_clr(entry, 1 + 1 + total);
}
/* Set the part of the entry corresponding to factor "data",
* from the factor coefficients in "src".
*/
static void set_factor(isl_int *entry, isl_int *src,
struct isl_coefficients_factor_data *data)
{
isl_seq_cpy(entry + 1 + 1 + data->start, src + 1 + 1, data->dim);
}
/* Set the part of the entry corresponding to factor "data",
* from the factor coefficients in "src" multiplied by "f".
*/
static void scale_factor(isl_int *entry, isl_int *src, isl_int f,
struct isl_coefficients_factor_data *data)
{
isl_seq_scale(entry + 1 + 1 + data->start, src + 1 + 1, f, data->dim);
}
/* Add all lines from the given factor to "bset",
* given that there is a "total" number of coefficients
* (other than that of the constant term).
*/
static __isl_give isl_basic_set *add_lines(__isl_take isl_basic_set *bset,
struct isl_coefficients_factor_data *factor, int total)
{
int i;
for (i = 0; i < factor->n_line; ++i) {
int k;
k = isl_basic_set_alloc_equality(bset);
if (k < 0)
return isl_basic_set_free(bset);
clear_entry(bset->eq[k], total);
set_factor(bset->eq[k], factor->coeff->eq[i], factor);
}
return bset;
}
/* Add all rays (other than lines) from the given factor to "bset",
* given that there is a "total" number of coefficients
* (other than that of the constant term).
*/
static __isl_give isl_basic_set *add_rays(__isl_take isl_basic_set *bset,
struct isl_coefficients_factor_data *data, int total)
{
int i;
int n_ineq = data->n_ray + data->n_vertex;
for (i = 0; i < n_ineq; ++i) {
int k;
if (!is_ray(data->coeff, i))
continue;
k = isl_basic_set_alloc_inequality(bset);
if (k < 0)
return isl_basic_set_free(bset);
clear_entry(bset->ineq[k], total);
set_factor(bset->ineq[k], data->coeff->ineq[i], data);
}
return bset;
}
/* Move to the first vertex of the given factor starting
* at inequality constraint "start", setting factor->pos and
* returning 1 if a vertex is found.
*/
static int factor_first_vertex(struct isl_coefficients_factor_data *factor,
int start)
{
int j;
int n = factor->n_ray + factor->n_vertex;
for (j = start; j < n; ++j) {
if (is_ray(factor->coeff, j))
continue;
factor->pos = j;
return 1;
}
return 0;
}
/* Move to the first constraint in each factor starting at "first"
* that represents a vertex.
* In particular, skip the initial constraints that correspond to rays.
*/
static void first_vertex(struct isl_coefficients_product_data *data, int first)
{
int i;
for (i = first; i < data->n; ++i)
factor_first_vertex(&data->factors[i], 0);
}
/* Move to the next vertex in the product.
* In particular, move to the next vertex of the last factor.
* If all vertices of this last factor have already been considered,
* then move to the next vertex of the previous factor(s)
* until a factor is found that still has a next vertex.
* Once such a next vertex has been found, the subsequent
* factors are reset to the first vertex.
* Return 1 if any next vertex was found.
*/
static int next_vertex(struct isl_coefficients_product_data *data)
{
int i;
for (i = data->n - 1; i >= 0; --i) {
struct isl_coefficients_factor_data *factor = &data->factors[i];
if (!factor_first_vertex(factor, factor->pos + 1))
continue;
first_vertex(data, i + 1);
return 1;
}
return 0;
}
/* Add a vertex to the product "bset" combining the currently selected
* vertices of the factors.
*
* In the dual representation, the constant term is always zero.
* The vertex itself is the sum of the contributions of the factors
* with a shared denominator in position 1.
*
* First compute the shared denominator (lcm) and
* then scale the numerators to this shared denominator.
*/
static __isl_give isl_basic_set *add_vertex(__isl_take isl_basic_set *bset,
struct isl_coefficients_product_data *data)
{
int i;
int k;
isl_int lcm, f;
k = isl_basic_set_alloc_inequality(bset);
if (k < 0)
return isl_basic_set_free(bset);
isl_int_init(lcm);
isl_int_init(f);
isl_int_set_si(lcm, 1);
for (i = 0; i < data->n; ++i) {
struct isl_coefficients_factor_data *factor = &data->factors[i];
isl_basic_set *coeff = factor->coeff;
int pos = factor->pos;
isl_int_lcm(lcm, lcm, coeff->ineq[pos][1]);
}
isl_int_set_si(bset->ineq[k][0], 0);
isl_int_set(bset->ineq[k][1], lcm);
for (i = 0; i < data->n; ++i) {
struct isl_coefficients_factor_data *factor = &data->factors[i];
isl_basic_set *coeff = factor->coeff;
int pos = factor->pos;
isl_int_divexact(f, lcm, coeff->ineq[pos][1]);
scale_factor(bset->ineq[k], coeff->ineq[pos], f, factor);
}
isl_int_clear(f);
isl_int_clear(lcm);
return bset;
}
/* Combine the duals of the factors in the factorization of a basic set
* to form the dual of the entire basic set.
* The dual share the coefficient of the constant term.
* All other coefficients are specific to a factor.
* Any constraint not involving the coefficient of the constant term
* can therefor simply be copied into the appropriate position.
* This includes all equality constraints since the coefficient
* of the constant term can always be increased and therefore
* never appears in an equality constraint.
* The inequality constraints involving the coefficient of
* the constant term need to be combined across factors.
* In particular, if this coefficient needs to be greater than or equal
* to some linear combination of the other coefficients in each factor,
* then it needs to be greater than or equal to the sum of
* these linear combinations across the factors.
*
* Alternatively, the constraints of the dual can be seen
* as the vertices, rays and lines of the original basic set.
* Clearly, rays and lines can simply be copied,
* while vertices needs to be combined across factors.
* This means that the number of rays and lines in the product
* is equal to the sum of the numbers in the factors,
* while the number of vertices is the product
* of the number of vertices in the factors. Note that each
* factor has at least one vertex.
* The only exception is when the factor is the dual of an obviously empty set,
* in which case a universe dual is created.
* In this case, return a universe dual for the product as well.
*
* While constructing the vertices, look for the first combination
* of inequality constraints that represent a vertex,
* construct the corresponding vertex and then move on
* to the next combination of inequality constraints until
* all combinations have been considered.
*/
static __isl_give isl_basic_set *construct_product(isl_ctx *ctx,
struct isl_coefficients_product_data *data)
{
int i;
int n_line, n_ray, n_vertex;
int total;
isl_space *space;
isl_basic_set *product;
if (!data->factors)
return NULL;
total = data->start_next;
n_line = 0;
n_ray = 0;
n_vertex = 1;
for (i = 0; i < data->n; ++i) {
n_line += data->factors[i].n_line;
n_ray += data->factors[i].n_ray;
n_vertex *= data->factors[i].n_vertex;
}
space = isl_space_set_alloc(ctx, 0, 1 + total);
if (n_vertex == 0)
return rational_universe(space);
product = isl_basic_set_alloc_space(space, 0, n_line, n_ray + n_vertex);
product = isl_basic_set_set_rational(product);
for (i = 0; i < data->n; ++i)
product = add_lines(product, &data->factors[i], total);
for (i = 0; i < data->n; ++i)
product = add_rays(product, &data->factors[i], total);
first_vertex(data, 0);
do {
product = add_vertex(product, data);
} while (next_vertex(data));
return product;
}
/* Given a factorization "f" of a basic set,
* construct a basic set containing the tuples of coefficients of all
* valid affine constraints on the product of the factors, ignoring
* the space of input and output.
* Note that this product may not be equal to the original basic set,
* if a non-trivial transformation is involved.
* This is handled by the caller.
*
* Compute the tuples of coefficients for each factor separately and
* then combine the results.
*/
static __isl_give isl_basic_set *isl_basic_set_coefficients_product(
__isl_take isl_factorizer *f)
{
struct isl_coefficients_product_data data;
isl_ctx *ctx;
isl_basic_set *coeff;
isl_bool every;
ctx = isl_factorizer_get_ctx(f);
if (isl_coefficients_product_data_init(ctx, &data, f->n_group) < 0)
f = isl_factorizer_free(f);
every = isl_factorizer_every_factor_basic_set(f,
&isl_basic_set_coefficients_factor, &data);
isl_factorizer_free(f);
if (every >= 0)
coeff = construct_product(ctx, &data);
else
coeff = NULL;
isl_coefficients_product_data_clear(&data);
return coeff;
}
/* Given a factorization "f" of a basic set,
* construct a basic set containing the tuples of coefficients of all
* valid affine constraints on the basic set, ignoring
* the space of input and output.
*
* The factorization may involve a linear transformation of the basic set.
* In particular, the transformed basic set is formulated
* in terms of x' = U x, i.e., x = V x', with V = U^{-1}.
* The dual is then computed in terms of y' with y'^t [z; x'] >= 0.
* Plugging in y' = [1 0; 0 V^t] y yields
* y^t [1 0; 0 V] [z; x'] >= 0, i.e., y^t [z; x] >= 0, which is
* the desired set of coefficients y.
* Note that this transformation to y' only needs to be applied
* if U is not the identity matrix.
*/
static __isl_give isl_basic_set *isl_basic_set_coefficients_morphed_product(
__isl_take isl_factorizer *f)
{
isl_bool is_identity;
isl_space *space;
isl_mat *inv;
isl_multi_aff *ma;
isl_basic_set *coeff;
if (!f)
goto error;
is_identity = isl_mat_is_scaled_identity(peek_inv(f->morph));
if (is_identity < 0)
goto error;
if (is_identity)
return isl_basic_set_coefficients_product(f);
inv = get_inv(f->morph);
inv = isl_mat_transpose(inv);
inv = isl_mat_lin_to_aff(inv);
coeff = isl_basic_set_coefficients_product(f);
space = isl_space_map_from_set(isl_basic_set_get_space(coeff));
ma = isl_multi_aff_from_aff_mat(space, inv);
coeff = isl_basic_set_preimage_multi_aff(coeff, ma);
return coeff;
error:
isl_factorizer_free(f);
return NULL;
}
/* Construct a basic set containing the tuples of coefficients of all
* valid affine constraints on the given basic set, ignoring
* the space of input and output.
*
* The caller has already checked that "bset" does not involve
* any local variables. It may have parameters, though.
* Treat them as regular variables internally.
* This is especially important for the factorization,
* since the (original) parameters should be taken into account
* explicitly in this factorization.
*
* Check if the basic set can be factorized.
* If so, compute constraints on the coefficients of the factors
* separately and combine the results.
* Otherwise, compute the results for the input basic set as a whole.
*/
static __isl_give isl_basic_set *basic_set_coefficients(
__isl_take isl_basic_set *bset)
{
isl_factorizer *f;
isl_size nparam;
nparam = isl_basic_set_dim(bset, isl_dim_param);
if (nparam < 0)
return isl_basic_set_free(bset);
bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
isl_dim_param, 0, nparam);
f = isl_basic_set_factorizer(bset);
if (!f)
return isl_basic_set_free(bset);
if (f->n_group > 0) {
isl_basic_set_free(bset);
return isl_basic_set_coefficients_morphed_product(f);
}
isl_factorizer_free(f);
return isl_basic_set_coefficients_base(bset);
}
/* Construct a basic set containing the tuples of coefficients of all
* valid affine constraints on the given basic set.
*/
__isl_give isl_basic_set *isl_basic_set_coefficients(
__isl_take isl_basic_set *bset)
{
isl_space *space;
if (!bset)
return NULL;
if (bset->n_div)
isl_die(bset->ctx, isl_error_invalid,
"input set not allowed to have local variables",
goto error);
space = isl_basic_set_get_space(bset);
space = isl_space_coefficients(space);
bset = basic_set_coefficients(bset);
bset = isl_basic_set_reset_space(bset, space);
return bset;
error:
isl_basic_set_free(bset);
return NULL;
}
/* Construct a basic set containing the elements that satisfy all
* affine constraints whose coefficient tuples are
* contained in the given basic set.
*/
__isl_give isl_basic_set *isl_basic_set_solutions(
__isl_take isl_basic_set *bset)
{
isl_space *space;
if (!bset)
return NULL;
if (bset->n_div)
isl_die(bset->ctx, isl_error_invalid,
"input set not allowed to have local variables",
goto error);
space = isl_basic_set_get_space(bset);
space = isl_space_solutions(space);
bset = farkas(bset, -1);
bset = isl_basic_set_reset_space(bset, space);
return bset;
error:
isl_basic_set_free(bset);
return NULL;
}
/* Construct a basic set containing the tuples of coefficients of all
* valid affine constraints on the given set.
*/
__isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set)
{
int i;
isl_basic_set *coeff;
if (!set)
return NULL;
if (set->n == 0) {
isl_space *space = isl_set_get_space(set);
space = isl_space_coefficients(space);
isl_set_free(set);
return rational_universe(space);
}
coeff = isl_basic_set_coefficients(isl_basic_set_copy(set->p[0]));
for (i = 1; i < set->n; ++i) {
isl_basic_set *bset, *coeff_i;
bset = isl_basic_set_copy(set->p[i]);
coeff_i = isl_basic_set_coefficients(bset);
coeff = isl_basic_set_intersect(coeff, coeff_i);
}
isl_set_free(set);
return coeff;
}
/* Wrapper around isl_basic_set_coefficients for use
* as a isl_basic_set_list_map callback.
*/
static __isl_give isl_basic_set *coefficients_wrap(
__isl_take isl_basic_set *bset, void *user)
{
return isl_basic_set_coefficients(bset);
}
/* Replace the elements of "list" by the result of applying
* isl_basic_set_coefficients to them.
*/
__isl_give isl_basic_set_list *isl_basic_set_list_coefficients(
__isl_take isl_basic_set_list *list)
{
return isl_basic_set_list_map(list, &coefficients_wrap, NULL);
}
/* Construct a basic set containing the elements that satisfy all
* affine constraints whose coefficient tuples are
* contained in the given set.
*/
__isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set)
{
int i;
isl_basic_set *sol;
if (!set)
return NULL;
if (set->n == 0) {
isl_space *space = isl_set_get_space(set);
space = isl_space_solutions(space);
isl_set_free(set);
return rational_universe(space);
}
sol = isl_basic_set_solutions(isl_basic_set_copy(set->p[0]));
for (i = 1; i < set->n; ++i) {
isl_basic_set *bset, *sol_i;
bset = isl_basic_set_copy(set->p[i]);
sol_i = isl_basic_set_solutions(bset);
sol = isl_basic_set_intersect(sol, sol_i);
}
isl_set_free(set);
return sol;
}