-
Notifications
You must be signed in to change notification settings - Fork 1
/
9c319617-0b21-489a-ae60-dd48e569ccf2.html
64 lines (64 loc) · 3.19 KB
/
9c319617-0b21-489a-ae60-dd48e569ccf2.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
<p>In this lesson, you learned how to:</p>
<ul>
<li> Divide monomials. </li>
<li> Divide a polynomial by a monomial. </li>
<li> Divide polynomials using long division. </li>
<li> Divide polynomials using synthetic division. </li>
<li> Divide polynomial functions. </li>
<li> Use the Remainder and Factor Theorems. </li>
</ul>
<p>Here are the <strong>activities</strong> that helped you reach those goals:</p>
<ul>
<li> 6.3.1: Dividing by Monomials </li>
<ul>
<li> In this activity, you used the properties of exponents to divide monomials by monomials. You also used distributed division to divide polynomials by monomials. </li>
</ul>
<li> 6.3.2: Dividing Polynomials Using Long Division </li>
<ul>
<li> IIn this activity, you used long division, in the same way as with constants, to divide polynomials by binomials. You also learned how to interpret a remainder in these division problems. </li>
<li> 6.3.2: Self Check </li>
<li>6.3.2: Additional Resources</li>
</ul>
<li> 6.3.3: Dividing Polynomials Using Synthetic Division </li>
<ul>
<li> In this activity, you learned a quicker, more efficient method to divide polynomials by binomials. </li>
<li> 6.3.3: Self Check </li>
<li>6.3.3: Additional Resources</li>
</ul>
<li> 6.3.4: Dividing Polynomial Functions and the Remainder Theorem </li>
<ul>
<li> In this activity, you divided polynomials in function form. You also learned an efficient way to determine the remainder in polynomial division. This can be used as an additional check for polynomial division problems.</li>
<li> 6.3.4: Self Check </li>
<li>6.3.4: Additional Resources</li>
</ul>
<li> 6.3.5: Using the Factor Theorem </li>
<ul>
<li> In this activity, you found a method to determine if a binomial of the form \(x - c\) is a factor in a larger polynomial. </li>
</ul>
</ul>
<p>After these activities, you completed the following <strong>practice</strong>:</p>
<ul>
<li> 6.3.6: Practice </li>
</ul>
<h4>Checking In</h4>
<div class="os-raise-ib-pset" data-button-text="solution" data-content-id="467f30fd-b2b6-4a87-95a5-7c6683be2bb2" data-fire-learning-opportunity-event="eventnameY" data-fire-success-event="eventnameX" data-retry-limit="0" data-schema-version="1.0">
<!--pulldown-->
<div class="os-raise-ib-pset-problem" data-content-id="512c68c0-686c-48e3-a966-fd7c89e95fe9" data-problem-type="dropdown" data-solution data-solution-options='["1 - I’m totally lost!", "2 - I could use some more help.", "3 - I mostly understand.", "4 - I can do it.","5 - I’ve got this!"]'>
<div class="os-raise-ib-pset-problem-content">
<p>On a scale of 1 to 5, how confident do you feel about the learning goals of this lesson? </p>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct!</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>Nice reflection! You learn more when you take the time to reflect on your thinking.</p>
</div>
</div>
<!--Do not edit below line.-->
<div class="os-raise-ib-pset-correct-response">
<!-- INSERT ANY VALID HTML HERE -->
</div>
<div class="os-raise-ib-pset-encourage-response">
<!-- INSERT ANY VALID HTML HERE -->
</div>
</div>