-
Notifications
You must be signed in to change notification settings - Fork 1
/
c7292a8c-40af-4c74-bf59-a00394e86628.html
202 lines (202 loc) · 13.5 KB
/
c7292a8c-40af-4c74-bf59-a00394e86628.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
<p>Complete the following questions to practice the skills you have learned in this lesson.</p>
<div class="os-raise-ib-pset" data-button-text="Check" data-content-id="52508ef4-61c9-4d0c-a195-fa1af657c3c8" data-fire-learning-opportunity-event="eventnameY" data-fire-success-event="eventnameX" data-retry-limit="2" data-schema-version="1.0">
<!--Q1-->
<div class="os-raise-ib-pset-problem" data-content-id="548dcd73-d585-4139-a459-d6bf8980d9fe" data-problem-type="multiplechoice" data-retry-limit="3" data-solution="Up 9" data-solution-options='["Down 3", "Down 8", "Up 9", "Up 8"]'>
<div class="os-raise-ib-pset-problem-content">
<p>For questions 1 - 3, use the graph below.</p>
<p><img alt="This graph shows four functions on an x, y coordinate plane. The \(x\)-axis runs from negative 8 to 9. The \(y\)-axis runs from negative 8 to 8. The first shows the decreasing function h of x = negative 2 times x plus 2. It passes through the points (0, 2) and (1, 0). The second is an increasing function that shows f of x = 2 times x plus 3. It passes through the points (0, 3) and (-1.5, 0). The third is an increasing function that shows j of x = 2 times x minus 6 and passes through the points (0, -6) and (3, 0). The fourth line is an increasing function where g of x = x divided by 2 minus 4 and passes through the points (0, -4) and (2 ,0)." src="https://k12.openstax.org/contents/raise/resources/4645f08e433b9ec202d22feee234504a8c2cca5e" width="400"></p>
<ol class="os-raise-noindent">
<li>Tell the shift from \(j(x)=2x-6\) to \(f(x)=2x+3\).</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! Up 9</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activity 4.11.2. </p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is up 9. </p>
</div>
</div>
<!--Q2-->
<div class="os-raise-ib-pset-problem" data-content-id="5eae2be9-0274-4a58-9340-3bca315b5440" data-problem-type="multiplechoice" data-retry-limit="3" data-solution="Vertical reflection, down 1" data-solution-options='["Vertical reflection, up 1", "Vertical reflection, down 1", "Vertical stretch, right 1", "Vertical stretch, left 1"]'>
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="2" type="1">
<li>Tell the transformations from \(f(x)=2x+3\) to \(h(x)=-2x+2\).</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! Vertical reflection, down 1</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 4.11.2–4.11.4.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is vertical reflection, down 1. </p>
</div>
</div>
<!--Q3-->
<div class="os-raise-ib-pset-problem" data-content-id="0086830d-c6d4-4fca-b4c6-9e78332d2635" data-problem-type="multiselect" data-solution='["Vertical compression of \\(\\frac12\\)", "Down 4"]' data-solution-options='["Vertical stretch of \\(\\frac12\\)", "Vertical compression of \\(\\frac12\\)", "Up 4", "Down 4", "Right 4", "Left 4"]'>
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="3" type="1">
<li>Describe the transformations made from the parent linear function to achieve \(g(x)=\frac12 x -4\).
<strong>Select two</strong> that apply:
</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! Vertical compression of \(\frac12\); Down 4</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 4.11.2–4.11.4. </p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answers are vertical compression of \(\frac12\), down 4. </p>
</div>
</div>
<!--Q4-->
<div class="os-raise-ib-pset-problem" data-content-id="d22bcd2b-aa35-487b-8ddf-30111943cf25" data-problem-type="multiselect" data-solution='["\\(y=-\\frac32x+1\\)", "\\(y=-\\frac32x+7\\)"]' data-solution-options='["\\(y=x+4\\)", "\\(y=x-4\\)", "\\(y=-\\frac32x+1\\)", "\\(y=\\frac32x-7\\)", "\\(y=\\frac32x+1\\)", "\\(y=-\\frac32x+7\\)"]'>
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="4" type="1">
<li><img alt="This graph shows two lines on an x, y coordinate plane. The \(x\)-axis runs from negative 4 to 6. The \(y\)-axis runs from negative 3 to 8. The first line has the equation y = -3 times x divided by 2 plus 1. The second line has the equation y = -3 times x divided by 2 plus 7. The lines do not cross." src="https://k12.openstax.org/contents/raise/resources/f3e3b6cadf256a648642efc7a4bbf57d0ab390b0" width="400">
<p>What are the equations of the two lines shown? <strong>Select two </strong>that apply:</p>
</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! \(y=-\frac32x+1\) and \(y=-\frac32x+7\)</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activity 4.11.1.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answers are \(y=-\frac32x+1\) and \(y=-\frac32x+7\). </p>
</div>
</div>
<!--Q5-->
<div class="os-raise-ib-pset-problem" data-content-id="356feacc-af8e-4824-9fa8-1fa282e2d1f4" data-problem-type="multiplechoice" data-retry-limit="3" data-solution="\(f(x)=-3x-4\)" data-solution-options='["\\(f(x)=3x+4\\)", "\\(f(x)=-3x+4\\)", "\\(f(x)=3x-4\\)", "\\(f(x)=-3x-4\\)"]'>
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="5" type="1">
<li>The linear function \(f(x)=x\) has a vertical stretch of 3, a vertical reflection, and a vertical shift down 4. Which of the following is the new function?</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! \(f(x)=-3x-4\)</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 4.11.2–4.11.4. </p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is \(f(x)=-3x-4\). </p>
</div>
</div>
<!--Q6-->
<div class="os-raise-ib-pset-problem" data-content-id="90cae9a1-c577-4ffa-a698-0752ff5525af" data-problem-type="multiplechoice" data-retry-limit="3" data-solution="\(f(x)=\frac13x+2\)" data-solution-options='["\\(f(x)=\\frac13x+2\\)", "\\(f(x)=-\\frac13x+2\\)", "\\(f(x)=2x+\\frac13\\)", "\\(f(x)=2x-\\frac13\\)"]'>
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="6" type="1">
<li>The linear function \(f(x)=x\) has a vertical compression of \(\frac13\) and a vertical shift up 2. Which of the following is the new function?</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! \(f(x)=\frac13x+2\)</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 4.11.2–4.11.4.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is \(f(x)=\frac13x+2\). </p>
</div>
</div>
<!--Q7-->
<div class="os-raise-ib-pset-problem" data-content-id="23cd6648-507a-4211-b236-f0868aca4911" data-problem-type="multiplechoice" data-retry-limit="3" data-solution="\(y=-\frac34x+7\)" data-solution-options='["\\(y=3x+7\\)", "\\(y=\\frac34x+7\\)", "\\(y=-\\frac34x+7\\)", "\\(y=-\\frac43x+7\\)"]'>
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="7" type="1">
<li>What is the equation of the function graphed?
<p><img alt="This graph shows a linear function graphed on an x y coordinate plane. The x axis is labeled from negative 2 to 8 and the y axis is labeled from negative 1 to 8. The function f is graph along the points (0, 7) and (4, 4)." class="img-fluid atto_image_button_text-bottom" height="214" src="https://k12.openstax.org/contents/raise/resources/ad267d8ce45e7410c4a1abb402789284ed15ea9c" width="300"></p>
</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! \(y=-\frac34x+7\)</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 4.11.1–4.11.4. </p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is \(y=-\frac34x+7\). </p>
</div>
</div>
<!--Q8-->
<div class="os-raise-ib-pset-problem" data-content-id="a257dca8-2c02-47e2-bc99-3ccbffc3ed08" data-problem-type="multiplechoice" data-retry-limit="3" data-solution="\(f(x)=\frac13x -2\)" data-solution-options='["\\(f(x)=\\frac13x -2\\)", "\\(f(x)=-\\frac13x-2\\)", "\\(f(x)=2x+\\frac13\\)", "\\(f(x)=2x - \\frac13\\)"]'>
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="8" type="1">
<li>The linear function \(f(x)=x\) has a vertical compression of \(\frac13\) and a vertical shift down 2. Which of the following is the new function?</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! \(f(x)=\frac13x -2\)</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 4.11.2–4.11.4.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is \(f(x)=\frac13x -2\)</p>
</div>
</div>
<div class="os-raise-ib-pset-problem" data-content-id="67af96c8-1a0c-4c07-9b8b-a709e7d55dbb" data-problem-type="multiplechoice" data-retry-limit="3" data-solution="A translation to the right \(c\) units followed by a reflection across the \(x\)-axis" data-solution-options='["A translation to the right \\(c\\) units followed by a reflection across the \\(x\\)-axis", "A translation to the left \\(c\\) units followed by a reflection across the \\(x\\)-axis", "A translation to the right \\(c\\) units followed by a reflection across the \\(y\\)-axis", "A translation to the left \\(c\\) units followed by a reflection across the \\(y\\)-axis"]'>
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="9" type="1">
<li>Which two transformations can be used to obtain the graph of \(g(x) = -(x-c)\) from the graph of \(g(x) = x\)?</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! A translation to the right \(c\) units followed by a reflection across the \(x\)-axis.</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 4.11.2 and 4.11.3.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is: A translation to the right \(c\) units followed by a reflection across the \(x\)-axis.</p>
</div>
</div>
<div class="os-raise-ib-pset-problem" data-content-id="a458c908-a4d6-4aaa-8e32-532cf9418259" data-problem-type="multiplechoice" data-retry-limit="3" data-solution="The graph of \(h\) is the result of the graph of \(g\) being translated left 14 units and down 12 units." data-solution-options='["The graph of \\(h\\) is the result of the graph of \\(g\\) being translated right 14 units and down 12 units.", "The graph of \\(h\\) is the result of the graph of \\(g\\) being translated left 14 units and down 12 units.", "The graph of \\(h\\) is the result of the graph of \\(g\\) being translated right 14 units and up 12 units.", "The graph of \\(h\\) is the result of the graph of \\(g\\) being translated left 14 units and up 12 units."]'>
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="10" type="1">
<li>For the functions \(h\) and \(g\), which statement is true if \(h(x) = g(x + 14) - 12\)?</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! The graph of \(h\) is the result of the graph of \(g\) being translated left 14 units and down 12 units.</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activity 4.11.2.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is: The graph of \(h\) is the result of the graph of \(g\) being translated left 14 units and down 12 units.</p>
</div>
</div>
<div class="os-raise-ib-pset-problem" data-content-id="14fc61a9-cead-4fcb-b070-e24a7df09970" data-problem-type="multiplechoice" data-retry-limit="3" data-solution="Vertical stretch" data-solution-options='["Vertical shrink or compression", "Vertical shift down", "Vertical shift up", "Vertical stretch"]'>
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="11" type="1">
<li>Which type of transformation can be used to obtain the graph of \(g(x) = 4(2 + x)\) from the graph of \(f(x) = 2+x\)?</li>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! The correct transformation is a Vertical stretch.</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activity 4.11.3.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is: Vertical stretch.</p>
</div>
</div>
<!--Do not edit below line.-->
<div class="os-raise-ib-pset-correct-response">
<!-- INSERT ANY VALID HTML HERE -->
</div>
<div class="os-raise-ib-pset-encourage-response">
<!-- INSERT ANY VALID HTML HERE -->
</div>
</div>