-
Notifications
You must be signed in to change notification settings - Fork 1
/
e55a7d7d-6b5d-4606-9d60-37b3f0f5b4a7.html
144 lines (144 loc) · 6.34 KB
/
e55a7d7d-6b5d-4606-9d60-37b3f0f5b4a7.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
<h4>Cool Down Activity</h4>
<p>Here is a system of equations:<br></p>
<p>\( \left\{ \begin{array}{c l} 12a + 5b = -15\\ 8a + b = 11\end{array}\right. \)</p><br>
<p>To solve this system, Diego wrote these equivalent systems for his first two steps.</p><br>
<p><strong>Step 1</strong></p>
<p>\( \left\{ \begin{array}{c l} 12a + 5b = -15\\ -40a + -5b = -55\end{array}\right. \)</p>
<p><strong>Step 2</strong></p>
<p>\( \left\{ \begin{array}{c l} 12a + 5b = -15\\ -28a = -70\end{array}\right. \)</p>
<!--Question 1 -->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="c4485157-0e9b-4981-8382-e0a8ff07afd1" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<ol class="os-raise-noindent">
<li> Describe the move that Diego made between the original system and step 1. </li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer: Your answer may vary, but here is a sample.</p>
<p>Multiply the second equation by -5</p>
<p>\(-5(8a+b=11)=-40a-5b=-55\)</p>
</div>
</div>
<!--Question 2 -->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="c311426d-01d7-4889-be3c-6bd7dac20fb3" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<ol class="os-raise-noindent" start="2">
<li> How do you know the system of equations in step 1 is equivalent to the original system? </li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>Multiplying each side of an equation by the same number gives an equivalent equation with the same solution.</p>
</div>
</div>
<!--Question 3 -->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="f4cdce15-3e8e-4142-aef6-30ee95779c0b" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<ol class="os-raise-noindent" start="3">
<li> Describe the move that Diego made between step 1 and step 2. </li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer: </p>
<p>Add the resulting equation to the first equation to eliminate the variable \(b\).</p>
<!--BEGIN ALIGN TO EQUALS WITH LINE-->
\(\begin{align*}12a+5b&=-15
\\-40a-5b&=-55
\\ \hline
-28a&=-70\\
\end{align*}\)<br><br>
<!--BEGIN ALIGN TO EQUALS WITH LINE-->
</div>
</div>
<!--Question 4 -->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="1007a0ca-4e4c-4ad1-b6f9-d9bb83cb5941" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<ol class="os-raise-noindent" start="4">
<li> How do you know the system of equations in step 2 is equivalent to the ones in step 1 (and to the original system) </li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>Adding an equal amount to each side of an equation keeps the two sides equal, so the solution for the first equation is also a solution for the sum.</p>
</div>
</div>
<!--Question 5 -->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="3afe2f23-5936-4069-9779-1a5fdb918b0e" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<ol class="os-raise-noindent" start="5">
<li> Write another set of equivalent systems (different from Diego's first two steps) that will allow one variable to be eliminated and enable you to solve the original system. Be prepared to describe the moves you make to create each new system and to explain why each one has the same solution as the original system. </li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer: Your answer may vary, but here is a sample.</p>
<p>Original System of Equations</p>
<p>\( \left\{ \begin{array}{c l} 12a + 5b = -15\\ 8a + b = 11\end{array}\right. \)</p><br>
<p><strong>Step 1 - </strong>Multiply the second equation by \( \frac{3}{2} \)</p>
<p>\(\frac32(8a+b=11)=12a+\frac32b=\frac{33}{2}\)</p>
<br>
<p><strong>Step 2 - </strong>Subtract the resulting equation from the first equation to eliminate the variable \( a \).</p>
<!--BEGIN ALIGN TO EQUALS WITH LINE-->
\(\begin{align*}12a+5b&=-15
\\-12a-\frac32b&=-\frac{33}{2}
\\ \hline
\frac72b&=-\frac{63}{2}\\
\end{align*}\)<br><br>
<!--BEGIN ALIGN TO EQUALS WITH LINE-->
<p><strong>Step 3 - </strong>Multiply the second equation by 2 to find the variable \(b\).</p>
<!--BEGIN ALIGN TO EQUALS WITH LINE-->
\(\begin{align*}2(\frac72b&=-\frac{63}{2})
\\7b&=-63
\\b&=-9
\end{align*}\)<br><br>
<!--BEGIN ALIGN TO EQUALS WITH LINE-->
</div>
</div>
<!--Question 6 -->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="0e652e1f-0b88-4e47-9a4c-15a34e7dade4" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<ol class="os-raise-noindent" start="6">
<li> Use your equivalent systems to solve the original system. Then, check your solution by substituting the pair of values into the original system. </li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>\(a=\frac52,\;b=-9\\\)</p>
<p>Original System of Equations</p>
<p>\( \left\{ \begin{array}{c l} 12a + 5b = -15\\ 8a + b = 11\end{array}\right. \)</p><br>
<p>Substitute the values into <strong>both</strong> original systems to check the solution.</p>
<br>
<!--BEGIN ALIGN TO EQUALS WITH LINE-->
\(\begin{align*}12a+5b&=-15
\\12(\frac52)+5(-9)&\overset?=-15
\\30-45&\overset?=-15
\\-15&=-15\checkmark
\end{align*}\)<br><br>
<!--BEGIN ALIGN TO EQUALS WITH LINE-->
<br>
<!--BEGIN ALIGN TO EQUALS WITH LINE-->
\(\begin{align*}8a+b&=11
\\8(\frac52)+(-9)&\overset?=11
\\20-9&\overset?=11
\\11&=11\checkmark
\end{align*}\)<br><br>
<!--BEGIN ALIGN TO EQUALS WITH LINE-->
</div>
</div>