-
Notifications
You must be signed in to change notification settings - Fork 1
/
f91e56e6-74a3-4eb5-9298-abba227f4a23.html
81 lines (81 loc) · 4.05 KB
/
f91e56e6-74a3-4eb5-9298-abba227f4a23.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
<h4>Cool Down Activity</h4>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<p>Here is one solution for solving \(x^2+3x+8=0\) by <span class="os-raise-ib-tooltip" data-schema-version="“1.0”" data-store="glossary-tooltip">completing the square</span>, where each step is shown, but numerical expressions are not evaluated.</p>
<p>Original equation<br>
\(x^2+3x+8=0\)</p>
<p><strong>Step 1</strong> - \(x^2+3x=-8\)</p>
<p><strong>Step 2</strong> - \(4x^2+4(3x)=4(-8)\)</p>
<p><strong>Step 3</strong> - \((2x)^2+6(2x)=-32\)</p>
<p><strong>Step 4</strong> - \(P^2+6P=-32\)</p>
<p><strong>Step 5</strong> - \(P^2+6P+3^2=-32+3^2\)</p>
<p><strong>Step 6</strong> - \((P+3)^2=3^2-32\)</p>
<p><strong>Step 7</strong> - \(P+3= \pm \sqrt{3^2-32}\)</p>
<p><strong>Step 8</strong> - \(P=-3 \pm \sqrt{3^2-32}\)</p>
<p><strong>Step 9</strong> - \(2x=-3 \pm \sqrt{3^2-32}\)</p>
<p><strong>Step 10</strong> - <br>
\(x= \frac{-3 \pm \sqrt{3^2-32}}{2}\)</p>
<ol class="os-raise-noindent">
<li>In Step 2, the equation is multiplied by 4. Why might that be?</li>
</ol>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer, then select the <strong>solution</strong> button to compare your work.</p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal1">
<p>Compare your answer:</p>
<p>To make the coefficient of \(x^2\) a <span class="os-raise-ib-tooltip" data-schema-version="“1.0”" data-store="glossary-tooltip">perfect square</span> and the coefficient of \(x\) an even number</p>
</div>
<br>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal2" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<ol class="os-raise-noindent" start="2">
<li>In Step 5, \(3^2\) is added to each side. Why might that be?</li>
</ol>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer, then select the <strong>solution</strong> button to compare your work.</p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal2">
<p>Compare your answer:</p>
<p>\(3^2\) completes the square for the expression on the left side. To keep the two sides equal, it needs to be added to the other side as well.</p>
</div>
<br>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal3" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<ol class="os-raise-noindent" start="3">
<li>What happened between Step 5 and Step 6?</li>
</ol>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer, then select the <strong>solution</strong> button to compare your work.</p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal3">
<p>Compare your answer:</p>
<p>The perfect square is rewritten in factored form, and \(-32+3^2\) is rewritten as \(3^2-32\).</p>
</div>
<br>
<div class="os-raise-student-reflection">
<p class="os-raise-student-reflection-title">Building Character: Intellectual Humility</p>
<div class="os-raise-d-flex-nowrap os-raise-gap-1">
<img src="https://k12.openstax.org/contents/raise/resources/0943d627452fc6cc10570e6cded146178d40e44d"
width="200px" height="200px"
/>
<div>
<p class="os-raise-mb-0">No matter how old you are, with intellectual humility you become wiser. It helps you be less judgmental of others, learn more in school, and be a better leader. </p>
<p>Think about yourself. Are these statements true for you?</p>
<ul>
<li>
I recognize the value in opinions that are different from my own.
</li>
<li>
I accept that my beliefs and attitudes may be wrong.
</li>
</ul>
<p>Don’t worry if none of these statements are true for you. Developing this trait takes time. Your first step starts today!</p>
</div>
</div>
</div>