-
Notifications
You must be signed in to change notification settings - Fork 424
/
components.py
2022 lines (1586 loc) · 87.2 KB
/
components.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
import copy
import itertools
import operator
import os
import pycountry
import random
import re
import six
import yaml
# Russian/Ukrainian parsing and inflection
import pymorphy2
import pymorphy2_dicts_ru
import pymorphy2_dicts_uk
from collections import defaultdict, OrderedDict
from geodata.address_formatting.formatter import AddressFormatter
from geodata.address_expansions.abbreviations import abbreviate
from geodata.address_expansions.equivalence import equivalent
from geodata.address_expansions.gazetteers import *
from geodata.addresses.config import address_config
from geodata.addresses.dependencies import ComponentDependencies
from geodata.addresses.floors import Floor
from geodata.addresses.entrances import Entrance
from geodata.addresses.house_numbers import HouseNumber
from geodata.addresses.metro_stations import MetroStation
from geodata.addresses.numbering import Digits
from geodata.addresses.po_boxes import POBox
from geodata.addresses.postcodes import PostCode
from geodata.addresses.staircases import Staircase
from geodata.addresses.units import Unit
from geodata.boundaries.names import boundary_names
from geodata.configs.utils import nested_get, recursive_merge
from geodata.coordinates.conversion import latlon_to_decimal
from geodata.countries.constants import Countries
from geodata.countries.names import *
from geodata.encoding import safe_encode
from geodata.graph.topsort import topsort
from geodata.i18n.unicode_properties import *
from geodata.language_id.disambiguation import *
from geodata.language_id.sample import sample_random_language
from geodata.math.floats import isclose
from geodata.math.sampling import cdf, weighted_choice
from geodata.names.normalization import name_affixes
from geodata.osm.components import osm_address_components
from geodata.places.config import place_config
from geodata.polygons.reverse_geocode import OSMCountryReverseGeocoder
from geodata.states.state_abbreviations import state_abbreviations
from geodata.text.normalize import *
from geodata.text.tokenize import tokenize, token_types
from geodata.text.utils import is_numeric
this_dir = os.path.realpath(os.path.dirname(__file__))
PARSER_DEFAULT_CONFIG = os.path.join(this_dir, os.pardir, os.pardir, os.pardir,
'resources', 'parser', 'default.yaml')
JAPANESE_ROMAJI = 'ja_rm'
ENGLISH = 'en'
SPANISH = 'es'
JAPANESE = 'ja'
CHINESE = 'zh'
KOREAN = 'ko'
CJK_LANGUAGES = set([CHINESE, JAPANESE, KOREAN])
class AddressComponents(object):
'''
This class, while it has a few dependencies, exposes a simple method
for transforming geocoded input addresses (usually a lat/lon with either
a name or house number + street name) into the sorts of examples used by
libpostal's address parser. The dictionaries produced here can be fed
directly to AddressFormatter.format_address to produce training examples.
There are several steps in expanding an address including reverse geocoding
to polygons, disambiguating which language the address uses, stripping standard
prefixes like "London Borough of", pruning duplicates like "Antwerpen, Antwerpen, Antwerpen".
Usage:
>>> components = AddressComponents(osm_admin_rtree, neighborhoods_rtree, places_index)
>>> components.expand({'name': 'Hackney Empire'}, 51.54559, -0.05567)
Returns (results vary because of randomness):
({'city': u'London',
'city_district': u'London Borough of Hackney',
'country': 'UK',
'name': 'Hackney Empire',
'state': u'England',
'state_district': u'Greater London'},
u'gb',
u'en')
'''
iso_alpha2_codes = set([c.alpha2.lower() for c in pycountry.countries])
iso_alpha3_codes = set([c.alpha3.lower() for c in pycountry.countries])
latin_alphabet_lower = set([unichr(c) for c in xrange(ord('a'), ord('z') + 1)])
BOUNDARY_COMPONENTS = OrderedDict.fromkeys((
AddressFormatter.SUBDIVISION,
AddressFormatter.METRO_STATION,
AddressFormatter.SUBURB,
AddressFormatter.CITY_DISTRICT,
AddressFormatter.CITY,
AddressFormatter.ISLAND,
AddressFormatter.STATE_DISTRICT,
AddressFormatter.STATE,
AddressFormatter.COUNTRY,
))
LOCALITY_COMPONENTS = OrderedDict.fromkeys((
AddressFormatter.SUBDIVISION,
AddressFormatter.METRO_STATION,
))
NAME_COMPONENTS = {
AddressFormatter.ATTENTION,
AddressFormatter.CARE_OF,
AddressFormatter.HOUSE,
}
ADDRESS_LEVEL_COMPONENTS = {
AddressFormatter.ATTENTION,
AddressFormatter.CARE_OF,
AddressFormatter.HOUSE,
AddressFormatter.HOUSE_NUMBER,
AddressFormatter.ROAD,
AddressFormatter.ENTRANCE,
AddressFormatter.STAIRCASE,
AddressFormatter.LEVEL,
AddressFormatter.UNIT,
}
ALL_OSM_NAME_KEYS = set(['name', 'name:simple',
'ISO3166-1:alpha2', 'ISO3166-1:alpha3',
'short_name', 'alt_name', 'official_name'])
NULL_PHRASE = 'null'
ALPHANUMERIC_PHRASE = 'alphanumeric'
STANDALONE_PHRASE = 'standalone'
IRELAND = 'ie'
JAMAICA = 'jm'
class zones:
COMMERCIAL = 'commercial'
RESIDENTIAL = 'residential'
INDUSTRIAL = 'industrial'
UNIVERSITY = 'university'
language_code_aliases = {
'zh_py': 'zh_pinyin'
}
slavic_morphology_analyzers = {
'ru': pymorphy2.MorphAnalyzer(pymorphy2_dicts_ru.get_path(), lang='ru'),
'uk': pymorphy2.MorphAnalyzer(pymorphy2_dicts_uk.get_path(), lang='uk'),
}
sub_building_component_class_map = {
AddressFormatter.ENTRANCE: Entrance,
AddressFormatter.STAIRCASE: Staircase,
AddressFormatter.LEVEL: Floor,
AddressFormatter.UNIT: Unit,
}
config = yaml.load(open(PARSER_DEFAULT_CONFIG))
# Non-admin component dropout
address_level_dropout_probabilities = {k: v['probability'] for k, v in six.iteritems(config['dropout'])}
def __init__(self, osm_admin_rtree, neighborhoods_rtree, places_index):
self.setup_component_dependencies()
self.osm_admin_rtree = osm_admin_rtree
self.neighborhoods_rtree = neighborhoods_rtree
self.places_index = places_index
self.setup_valid_scripts()
def setup_valid_scripts(self):
chars = get_chars_by_script()
all_scripts = build_master_scripts_list(chars)
script_codes = get_script_codes(all_scripts)
valid_scripts = set(all_scripts) - set([COMMON_SCRIPT, UNKNOWN_SCRIPT])
valid_scripts |= set([code for code, script in six.iteritems(script_codes) if script not in valid_scripts])
self.valid_scripts = set([s.lower() for s in valid_scripts])
def setup_component_dependencies(self):
self.component_dependencies = {}
default_deps = self.config.get('component_dependencies', {})
country_components = default_deps.pop('exceptions', {})
for c in list(country_components):
conf = copy.deepcopy(default_deps)
recursive_merge(conf, country_components[c])
country_components[c] = conf
country_components[None] = default_deps
for country, country_deps in six.iteritems(country_components):
graph = {k: c['dependencies'] for k, c in six.iteritems(country_deps)}
graph.update({c: [] for c in AddressFormatter.address_formatter_fields if c not in graph})
self.component_dependencies[country] = ComponentDependencies(graph)
def address_level_dropout_order(self, components, country):
'''
Address component dropout
-------------------------
To make the parser more robust to different kinds of input (not every address is fully
specified, especially in a geocoder, on mobile, with autocomplete, etc.), we want to
train the parser with many types of addresses.
This will help the parser not become too reliant on component order, e.g. it won't think
that the first token in a string is always the venue name simply because that was the case
in the training data.
This method returns a dropout ordering ensuring that if the components are dropped in order,
each set will be valid. In the parser config (resources/parser/default.yaml), the dependencies
for each address component are specified, e.g. "house_number" depends on "road", so it would
be invalid to have an address that was simply a house number with no other information. The
caller of this method may decide to drop all the components at once or one at a time, creating
N training examples from a single address.
Some components are also more likely to be dropped than others, so in the same config there are
dropout probabilities for each.
'''
if not components:
return []
component_bitset = ComponentDependencies.component_bitset(components)
deps = self.component_dependencies.get(country, self.component_dependencies[None])
candidates = [c for c in reversed(deps.dependency_order) if c in components and c in self.address_level_dropout_probabilities]
retained = set(candidates)
dropout_order = []
for component in candidates:
if component not in retained:
continue
if random.random() >= self.address_level_dropout_probabilities.get(component, 0.0):
continue
bit_value = deps.component_bit_values.get(component, 0)
candidate_bitset = component_bitset ^ bit_value
if all(((candidate_bitset & deps[c]) for c in retained if c != component)) or not (component_bitset & deps[component]):
dropout_order.append(component)
component_bitset = candidate_bitset
retained.remove(component)
return dropout_order
def strip_keys(self, value, ignore_keys):
for key in ignore_keys:
value.pop(key, None)
def osm_reverse_geocoded_components(self, latitude, longitude):
return self.osm_admin_rtree.point_in_poly(latitude, longitude, return_all=True)
@classmethod
def osm_country_and_languages(cls, osm_components):
return OSMCountryReverseGeocoder.country_and_languages_from_components(osm_components)
@classmethod
def osm_component_is_village(cls, component):
return component.get('place', '').lower() in ('locality', 'village', 'hamlet')
@classmethod
def categorize_osm_component(cls, country, props, containing_components):
containing_ids = [(c['type'], c['id']) for c in containing_components if 'type' in c and 'id' in c]
return osm_address_components.component_from_properties(country, props, containing=containing_ids)
@classmethod
def categorized_osm_components(cls, country, osm_components):
components = []
for i, props in enumerate(osm_components):
name = props.get('name')
if not name:
continue
component = cls.categorize_osm_component(country, props, osm_components)
if component is not None:
components.append((props, component))
return components
@classmethod
def address_language(cls, components, candidate_languages):
'''
Language
--------
If there's only one candidate language for a given country or region,
return that language.
In countries that speak multiple languages (Belgium, Hong Kong, Wales, the US
in Spanish-speaking regions, etc.), we need at least a road name for disambiguation.
If we can't identify a language, the address will be labeled "unk". If the street name
itself contains phrases from > 1 language, the address will be labeled ambiguous.
'''
language = None
if len(candidate_languages) == 1:
language = candidate_languages[0][0]
else:
street = components.get(AddressFormatter.ROAD, None)
if street is not None:
language = disambiguate_language(street, candidate_languages)
else:
if has_non_latin_script(candidate_languages):
for component, value in six.iteritems(components):
language, script_langs = disambiguate_language_script(value, candidate_languages)
if language is not UNKNOWN_LANGUAGE:
break
else:
language = UNKNOWN_LANGUAGE
else:
default_languages = [lang for lang, default in candidate_languages if default]
if len(default_languages) == 1:
language = default_languages[0]
else:
language = UNKNOWN_LANGUAGE
return language
@classmethod
def pick_random_name_key(cls, props, component, suffix=''):
'''
Random name
-----------
Pick a name key from OSM
'''
raw_key = boundary_names.name_key(props, component)
key = ''.join((raw_key, suffix)) if ':' not in raw_key else raw_key
return key, raw_key
@classmethod
def all_names(cls, props, languages, component=None, keys=ALL_OSM_NAME_KEYS):
# Preserve uniqueness and order
valid_names, _ = boundary_names.name_key_dist(props, component)
names = OrderedDict()
valid_names = set([k for k in valid_names if k in keys])
for k, v in six.iteritems(props):
if k in valid_names:
names[v] = None
elif ':' in k:
if k == 'name:simple' and 'en' in languages and k in keys:
names[v] = None
k, qual = k.split(':', 1)
if k in valid_names and qual.split('_', 1)[0] in languages:
names[v] = None
return names.keys()
@classmethod
def place_names_and_components(cls, name, osm_components, country=None, languages=None):
names = set()
components = defaultdict(set)
name_norm = six.u('').join([t for t, c in normalized_tokens(name, string_options=NORMALIZE_STRING_LOWERCASE,
token_options=TOKEN_OPTIONS_DROP_PERIODS, whitespace=True)])
for i, props in enumerate(osm_components):
containing_ids = [(c['type'], c['id']) for c in osm_components[i + 1:] if 'type' in c and 'id' in c]
component = osm_address_components.component_from_properties(country, props, containing=containing_ids)
component_names = set([n.lower() for n in cls.all_names(props, languages or [] )])
valid_component_names = set()
for n in component_names:
norm = six.u('').join([t for t, c in normalized_tokens(n, string_options=NORMALIZE_STRING_LOWERCASE,
token_options=TOKEN_OPTIONS_DROP_PERIODS, whitespace=True)])
if norm == name_norm:
continue
valid_component_names.add(norm)
names |= valid_component_names
is_state = False
if component is not None:
for cn in component_names:
components[cn.lower()].add(component)
if not is_state:
is_state = component == AddressFormatter.STATE
if is_state:
for state in component_names:
for language in languages:
abbreviations = state_abbreviations.get_all_abbreviations(country, language, state, default=None)
if abbreviations:
abbrev_names = [a.lower() for a in abbreviations]
names.update(abbrev_names)
for a in abbrev_names:
components[a].add(AddressFormatter.STATE)
return names, components
@classmethod
def strip_components(cls, name, osm_components, country, languages):
if not name or not osm_components:
return name
tokens = tokenize(name)
tokens_lower = normalized_tokens(name, string_options=NORMALIZE_STRING_LOWERCASE,
token_options=TOKEN_OPTIONS_DROP_PERIODS)
names, components = cls.place_names_and_components(name, osm_components, country=country, languages=languages)
phrase_filter = PhraseFilter([(n, '') for n in names])
phrases = list(phrase_filter.filter(tokens_lower))
stripped = []
for is_phrase, tokens, value in phrases:
if not is_phrase:
t, c = tokens
if stripped and c not in (token_types.IDEOGRAPHIC_CHAR, token_types.IDEOGRAPHIC_NUMBER):
stripped.append(u' ')
if c not in token_types.PUNCTUATION_TOKEN_TYPES:
stripped.append(t)
name = u''.join(stripped)
return name
parens_regex = re.compile('\(.*?\)')
@classmethod
def normalized_place_name(cls, name, tag, osm_components, country=None, languages=None, phrase_from_component=False):
'''
Multiple place names
--------------------
This is to help with things like addr:city="New York NY" and cleanup other invalid user-specified boundary names
'''
tokens = tokenize(name)
# Sometimes there are garbage tags like addr:city="?", etc.
if not phrase_from_component and not any((c in token_types.WORD_TOKEN_TYPES for t, c in tokens)):
return None
tokens_lower = normalized_tokens(name, string_options=NORMALIZE_STRING_LOWERCASE,
token_options=TOKEN_OPTIONS_DROP_PERIODS)
names, components = cls.place_names_and_components(name, osm_components, country=country, languages=languages)
phrase_filter = PhraseFilter([(n, '') for n in names])
phrases = list(phrase_filter.filter(tokens_lower))
num_phrases = 0
total_tokens = 0
current_phrase_start = 0
current_phrase_len = 0
current_phrase = []
for is_phrase, phrase_tokens, value in phrases:
if is_phrase:
whitespace = not any((c in (token_types.IDEOGRAPHIC_CHAR, token_types.IDEOGRAPHIC_NUMBER) for t, c in phrase_tokens))
join_phrase = six.u(' ') if whitespace else six.u('')
if num_phrases > 0 and total_tokens > 0:
# Remove hanging comma, slash, etc.
last_token, last_class = tokens[total_tokens - 1]
if last_class in token_types.NON_ALPHANUMERIC_TOKEN_TYPES:
total_tokens -= 1
# Return phrase with original capitalization
return join_phrase.join([t for t, c in tokens[:total_tokens]])
elif num_phrases == 0 and total_tokens > 0 and not phrase_from_component:
# We're only talking about addr:city tags, etc. so default to
# the reverse geocoded components (better names) if we encounter
# an unknown phrase followed by a containing boundary phrase.
return None
current_phrase_start = total_tokens
current_phrase_len = len(phrase_tokens)
current_phrase_tokens = tokens_lower[current_phrase_start:current_phrase_start + current_phrase_len]
current_phrase = join_phrase.join([t for t, c in current_phrase_tokens])
# Handles cases like addr:city="Harlem" when Harlem is a neighborhood
tags = components.get(current_phrase, set())
if tags and tag not in tags and not phrase_from_component:
return None
total_tokens += len(phrase_tokens)
num_phrases += 1
else:
total_tokens += 1
if cls.parens_regex.search(name):
name = cls.parens_regex.sub(six.u(''), name).strip()
# If the name contains a comma, stop and only use the phrase before the comma
if ',' in name:
return name.split(',', 1)[0].strip()
return name
@classmethod
def normalize_place_names(cls, address_components, osm_components, country=None, languages=None, phrase_from_component=False):
for key in list(address_components):
name = address_components[key]
if key in cls.BOUNDARY_COMPONENTS:
name = cls.normalized_place_name(name, key, osm_components,
country=country, languages=languages,
phrase_from_component=phrase_from_component)
if name is not None:
address_components[key] = name
else:
address_components.pop(key)
def normalize_address_components(self, components):
address_components = {k: v for k, v in components.iteritems()
if k in self.formatter.aliases}
self.formatter.aliases.replace(address_components)
return address_components
@classmethod
def combine_fields(cls, address_components, language, country=None, generated=None):
combo_config = address_config.get_property('components.combinations', language, country=country, default={})
combos = []
probs = {}
for combo in combo_config:
components = OrderedDict.fromkeys(combo['components']).keys()
if not all((is_numeric(address_components.get(c, generated.get(c))) or generated.get(c) for c in components)):
if combo['probability'] == 1.0:
for c in components:
if c in address_components and c in generated:
address_components.pop(c, None)
continue
combos.append((len(components), combo))
if not combos:
return None
for num_components, combo in combos:
prob = combo['probability']
if random.random() < prob:
break
else:
return None
components = OrderedDict.fromkeys(combo['components']).keys()
values = []
probs = []
for s in combo['separators']:
values.append(s['separator'])
probs.append(s['probability'])
probs = cdf(probs)
separator = weighted_choice(values, probs)
new_label = combo['label']
new_component = []
for c in components:
component = address_components.pop(c, None)
if component is None and c in generated:
component = generated[c]
elif component is None:
continue
new_component.append(component)
new_value = separator.join(new_component)
address_components[new_label] = new_value
return set(components)
@classmethod
def generated_type(cls, component, existing_components, language, country=None):
component_config = address_config.get_property('components.{}'.format(component), language, country=country)
if not component_config:
return None
prob_dist = component_config
conditionals = component_config.get('conditional', [])
if conditionals:
for vals in conditionals:
c = vals['component']
if c in existing_components:
prob_dist = vals['probabilities']
break
values = []
probs = []
for num_type in (cls.NULL_PHRASE, cls.ALPHANUMERIC_PHRASE, cls.STANDALONE_PHRASE):
key = '{}_probability'.format(num_type)
prob = prob_dist.get(key)
if prob is not None:
values.append(num_type)
probs.append(prob)
elif num_type in prob_dist:
values.append(num_type)
probs.append(1.0)
break
if not probs:
return None
probs = cdf(probs)
num_type = weighted_choice(values, probs)
if num_type == cls.NULL_PHRASE:
return None
else:
return num_type
@classmethod
def get_component_phrase(cls, component, language, country=None):
component = safe_decode(component)
if not is_numeric(component) and not (component.isalpha() and len(component) == 1):
return None
phrase = cls.phrase(component, language, country=country)
if phrase != component:
return phrase
else:
return None
@classmethod
def normalize_sub_building_components(cls, address_components, language, country=None):
for component, cls in six.iteritems(cls.sub_building_component_class_map):
if component in address_components:
val = address_components[component]
new_val = cls.get_component_phrase(cls, val, language, country)
if new_val is not None:
address_components[component] = new_val
@classmethod
def cldr_country_name(cls, country_code, language):
'''
Country names
-------------
In OSM, addr:country is almost always an ISO-3166 alpha-2 country code.
However, we'd like to expand these to include natural language forms
of the country names we might be likely to encounter in a geocoder or
handwritten address.
These splits are somewhat arbitrary but could potentially be fit to data
from OpenVenues or other sources on the usage of country name forms.
If the address includes a country, the selection procedure proceeds as follows:
1. With probability a, select the country name in the language of the address
(determined above), or with the localized country name if the language is
undtermined or ambiguous.
2. With probability b(1-a), sample a language from the distribution of
languages on the Internet and use the country's name in that language.
3. This is implicit, but with probability (1-b)(1-a), keep the country code
'''
cldr_config = nested_get(cls.config, ('country', 'cldr'))
alpha_2_iso_code_prob = float(cldr_config['iso_alpha_2_code_probability'])
localized_name_prob = float(cldr_config['localized_name_probability'])
iso_3166_name_prob = float(cldr_config['iso_3166_name_probability'])
alpha_3_iso_code_prob = float(cldr_config['iso_alpha_3_code_probability'])
localized, iso_3166, alpha3, alpha2 = range(4)
probs = cdf([localized_name_prob, iso_3166_name_prob, alpha_3_iso_code_prob, alpha_2_iso_code_prob])
value = weighted_choice(values, probs)
country_name = country_code.upper()
if language in (AMBIGUOUS_LANGUAGE, UNKNOWN_LANGUAGE):
language = None
if value == localized:
country_name = country_names.localized_name(country_code, language) or country_names.localized_name(country_code) or country_name
elif value == iso_3166:
country_name = country_names.iso_3166_name(country_code)
elif value == alpha3:
country_name = country_names.alpha3_code(country_code) or country_name
return country_name
def is_country_iso_code(self, country):
country = country.lower()
return country in self.iso_alpha2_codes or country in self.iso_alpha3_codes
def replace_country_name(self, address_components, country, language):
address_country = address_components.get(AddressFormatter.COUNTRY)
cldr_country_prob = float(nested_get(self.config, ('country', 'cldr_country_probability')))
replace_with_cldr_country_prob = float(nested_get(self.config, ('country', 'replace_with_cldr_country_probability')))
remove_iso_code_prob = float(nested_get(self.config, ('country', 'remove_iso_code_probability')))
is_iso_code = address_country and self.is_country_iso_code(address_country)
if (is_iso_code and random.random() < replace_with_cldr_country_prob) or random.random() < cldr_country_prob:
address_country = self.cldr_country_name(country, language)
if address_country:
address_components[AddressFormatter.COUNTRY] = address_country
elif is_iso_code and random.random() < remove_iso_code_prob:
address_components.pop(AddressFormatter.COUNTRY)
def non_local_language(self):
non_local_language_prob = float(nested_get(self.config, ('languages', 'non_local_language_probability')))
if random.random() < non_local_language_prob:
return sample_random_language()
return None
def state_name(self, address_components, country, language, non_local_language=None, always_use_full_names=False):
'''
States
------
Primarily for the US, Canada and Australia, OSM addr:state tags tend to use the abbreviated
state name whereas we'd like to include both forms. With some probability, replace the abbreviated
name with the unabbreviated one e.g. CA => California
'''
address_state = address_components.get(AddressFormatter.STATE)
if address_state and country and not non_local_language:
state_full_name = state_abbreviations.get_full_name(country, language, address_state)
state_full_name_prob = float(nested_get(self.config, ('state', 'full_name_probability')))
if state_full_name and (always_use_full_names or random.random() < state_full_name_prob):
address_state = state_full_name
elif address_state and non_local_language:
_ = address_components.pop(AddressFormatter.STATE, None)
address_state = None
return address_state
def pick_language_suffix(self, osm_components, language, non_local_language, more_than_one_official_language):
'''
Language suffix
---------------
This captures some variations in languages written with different scripts
e.g. language=ja_rm is for Japanese Romaji.
Pick a language suffix with probability proportional to how often the name is used
in the reverse geocoded components. So if only 2/5 components have name:ja_rm listed
but 5/5 have either name:ja or just plain name, we would pick standard Japanese (Kanji)
with probability .7143 (5/7) and Romaji with probability .2857 (2/7).
'''
# This captures name variations like "ja_rm" for Japanese Romaji, etc.
language_scripts = defaultdict(int)
use_language = (non_local_language or language)
for c in osm_components:
for k, v in six.iteritems(c):
if ':' not in k:
continue
splits = k.split(':')
if len(splits) > 0 and splits[0] == 'name' and '_' in splits[-1] and splits[-1].split('_', 1)[0] == use_language:
language_scripts[splits[-1]] += 1
elif k == 'name' or (splits[0] == 'name' and splits[-1]) == use_language:
language_scripts[None] += 1
language_script = None
if len(language_scripts) > 1:
cumulative = float(sum(language_scripts.values()))
values = list(language_scripts.keys())
probs = cdf([float(c) / cumulative for c in language_scripts.values()])
language_script = weighted_choice(values, probs)
if not language_script and not non_local_language and not more_than_one_official_language:
return ''
else:
return ':{}'.format(language_script or non_local_language or language)
# e.g. Dublin 3
dublin_postal_district_regex_str = '(?:[1-9]|1[1-9]|2[0-4]|6w)'
dublin_postal_district_regex = re.compile('^{}$'.format(dublin_postal_district_regex_str), re.I)
dublin_city_district_regex = re.compile('dublin {}$'.format(dublin_postal_district_regex_str), re.I)
@classmethod
def format_dublin_postal_district(cls, address_components):
'''
Dublin postal districts
-----------------------
Since the introduction of the Eire code, former Dublin postcodes
are basically being used as what we would call a city_district in
libpostal, so fix that here.
If addr:city is given as "Dublin 3", make it city_district instead
If addr:city is given as "Dublin" or "City of Dublin" and addr:postcode
is given as "3", remove city/postcode and make it city_district "Dublin 3"
'''
city = address_components.get(AddressFormatter.CITY)
# Change to city_district
if city and cls.dublin_city_district_regex.match(city):
address_components[AddressFormatter.CITY_DISTRICT] = address_components.pop(AddressFormatter.CITY)
postcode = address_components.get(AddressFormatter.POSTCODE)
if postcode and (cls.dublin_postal_district_regex.match(postcode) or cls.dublin_city_district_regex.match(postcode)):
address_components.pop(AddressFormatter.POSTCODE)
return True
elif city and city.lower() in ('dublin', 'city of dublin', 'dublin city') and AddressFormatter.POSTCODE in address_components:
postcode = address_components[AddressFormatter.POSTCODE]
if cls.dublin_postal_district_regex.match(postcode):
address_components.pop(AddressFormatter.CITY)
address_components[AddressFormatter.CITY_DISTRICT] = 'Dublin {}'.format(address_components.pop(AddressFormatter.POSTCODE))
return True
elif cls.dublin_city_district_regex.match(postcode):
address_components[AddressFormatter.CITY_DISTRICT] = address_components.pop(AddressFormatter.POSTCODE)
return True
return False
# e.g. Kingston 5
kingston_postcode_regex = re.compile('(kingston )?([1-9]|1[1-9]|20|c\.?s\.?o\.?)$', re.I)
@classmethod
def format_kingston_postcode(cls, address_components):
'''
Kingston postcodes
------------------
Jamaica does not have a postcode system, except in Kingston where
there are postal zones 1-20 plus the Central Sorting Office (CSO).
These are not always consistently labeled in OSM, so normalize here.
If city is given as "Kingston 20", separate into city="Kingston", postcode="20"
'''
city = address_components.get(AddressFormatter.CITY)
postcode = address_components.get(AddressFormatter.POSTCODE)
if city:
match = cls.kingston_postcode_regex.match(city)
if match:
city, postcode = match.groups()
if city:
address_components[AddressFormatter.CITY] = city
else:
address_components.pop(AddressFormatter.CITY)
if postcode:
address_components[AddressFormatter.POSTCODE] = postcode
return True
elif postcode:
match = cls.kingston_postcode_regex.match(postcode)
if match:
city, postcode = match.groups()
if city and AddressFormatter.CITY not in address_components:
address_components[AddressFormatter.CITY] = city
if postcode:
address_components[AddressFormatter.POSTCODE] = postcode
return True
return False
@classmethod
def format_japanese_neighborhood_romaji(cls, address_components):
neighborhood = safe_decode(address_components.get(AddressFormatter.SUBURB, ''))
if neighborhood.endswith(safe_decode('丁目')):
neighborhood = neighborhood[:-2]
if neighborhood and neighborhood.isdigit():
if random.random() < 0.5:
neighborhood = Digits.rewrite_standard_width(neighborhood)
suffix = safe_decode(random.choice(('chōme', 'chome')))
hyphen = six.u('-') if random.random < 0.5 else six.u(' ')
address_components[AddressFormatter.SUBURB] = six.u('{}{}{}').format(neighborhood, hyphen, suffix)
japanese_node_admin_level_map = {
'quarter': 9,
'neighborhood': 10,
'neighbourhood': 10,
}
def japanese_neighborhood_sort_key(self, val):
admin_level = val.get('admin_level')
if admin_level and admin_level.isdigit():
return int(admin_level)
else:
return self.japanese_node_admin_level_map.get(val.get('place'), 1000)
@classmethod
def genitive_name(cls, name, language):
morph = cls.slavic_morphology_analyzers.get(language)
if not morph:
return None
norm = []
words = safe_decode(name).split()
n = len(words)
for word in words:
parsed = morph.parse(word)[0]
inflected = parsed.inflect({'gent'})
if inflected and inflected.word:
norm.append(inflected.word)
else:
norm.append(word)
return six.u(' ').join(norm)
@classmethod
def add_genitives(cls, address_components, language):
if language in cls.slavic_morphology_analyzers and AddressFormatter.CITY in address_components:
for component in address_components:
if component not in AddressFormatter.BOUNDARY_COMPONENTS:
continue
genitive_probability = nested_get(cls.config, ('slavic_names', component, 'genitive_probability'), default=None)
if genitive_probability is not None and random.random() < float(genitive_probability):
address_components[component] = cls.genitive_name(address_components[component], language)
@classmethod
def spanish_street_name(cls, street):
'''
Most Spanish street names begin with Calle officially
but since it's so common, this is often omitted entirely.
As such, for Spanish-speaking places with numbered streets
like Mérida in Mexico, it would be legitimate to have a
simple number like "27" for the street name in a GIS
data set which omits the Calle. However, we don't really
want to train on "27/road 1/house_number" as that's not
typically how a numeric-only street would be written. However,
we don't want to neglect entire cities like Mérida which are
predominantly a grid, so add Calle (may be abbreviated later).
'''
if is_numeric(street):
street = six.u('Calle {}').format(street)
return street
BRASILIA_RELATION_ID = '2758138'
@classmethod
def is_in(cls, osm_components, component_id, component_type='relation'):
for c in osm_components:
if c.get('type') == component_type and c.get('id') == component_id:
return True
return False
brasilia_street_name_regex = re.compile('(?:\\s*\-\\s*)?\\b(bloco|bl|lote|lt)\\b.*$', re.I | re.U)
brasilia_building_regex = re.compile('^\\s*bloco.*$', re.I | re.U)
@classmethod
def format_brasilia_address(cls, address_components):
'''
Brasília, Brazil's capital, uses a grid-like system
'''
street = address_components.get(AddressFormatter.ROAD)
if street:
address_components[AddressFormatter.ROAD] = street = cls.brasilia_street_name_regex.sub(six.u(''), street)
name = address_components.get(AddressFormatter.HOUSE)
if name and cls.brasilia_building_regex.match(name):
address_components[AddressFormatter.HOUSE_NUMBER] = address_components.pop(AddressFormatter.HOUSE)
central_european_cities = {
# Czech Republic
'cz': [u'praha', u'prague'],
# Poland
'pl': [u'kraków', u'crakow', u'krakow'],
# Hungary
'hu': [u'budapest'],
# Slovakia
'sk': [u'bratislava', u'košice', u'kosice'],
# Austria
'at': [u'wien', u'vienna', u'graz', u'linz', u'klagenfurt'],
}
central_european_city_district_regexes = {country: re.compile(u'^({})\s+(?:[0-9]+|[ivx]+\.?)\\s*$'.format(u'|'.join(cities)), re.I | re.U)
for country, cities in six.iteritems(central_european_cities)}
@classmethod
def format_central_european_city_district(cls, country, address_components):
city = address_components.get(AddressFormatter.CITY)
city_district_regexes = cls.central_european_city_district_regexes.get(country)
if city and city_district_regexes:
match = city_district_regexes.match(city)
if match:
address_components[AddressFormatter.CITY_DISTRICT] = address_components.pop(AddressFormatter.CITY)