-
Notifications
You must be signed in to change notification settings - Fork 194
/
main2.py
171 lines (137 loc) · 5.33 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# coding: utf-8
from __future__ import division, print_function
from collections import OrderedDict
from time import time
import models
import data
import theano
import sys
import os.path
try:
input = raw_input
except NameError:
pass
import theano.tensor as T
import numpy as np
from main import get_minibatch
MAX_EPOCHS = 50
MINIBATCH_SIZE = 128
L2_REG = 0.0
CLIPPING_THRESHOLD = 2.0
PATIENCE_EPOCHS = 1
"""
Second stage training
"""
if __name__ == "__main__":
if len(sys.argv) > 1:
model_name = sys.argv[1]
else:
sys.exit("'Model name' argument missing!")
if len(sys.argv) > 2:
num_hidden = int(sys.argv[2])
else:
sys.exit("'Hidden layer size' argument missing!")
if len(sys.argv) > 3:
learning_rate = float(sys.argv[3])
else:
sys.exit("'Learning rate' argument missing!")
if len(sys.argv) > 4:
stage1_model_file_name = sys.argv[4]
else:
sys.exit("'Stage 1 model path' argument missing!")
model_file_name = "Model_stage2_%s_h%d_lr%s.pcl" % (model_name, num_hidden, learning_rate)
print(num_hidden, learning_rate, model_file_name)
word_vocabulary = data.read_vocabulary(data.WORD_VOCAB_FILE)
punctuation_vocabulary = data.iterable_to_dict(data.PUNCTUATION_VOCABULARY)
x = T.imatrix('x')
y = T.imatrix('y')
p = T.matrix('p')
lr = T.scalar('lr')
continue_with_previous = False
if os.path.isfile(model_file_name):
while True:
resp = input("Found an existing model with the name %s. Do you want to:\n[c]ontinue training the existing model?\n[r]eplace the existing model and train a new one?\n[e]xit?\n>" % model_file_name)
resp = resp.lower().strip()
if resp not in ('c', 'r', 'e'):
continue
if resp == 'e':
sys.exit()
elif resp == 'c':
continue_with_previous = True
break
if continue_with_previous:
net, state = models.load(model_file_name, MINIBATCH_SIZE, x, p)
gsums, learning_rate, validation_ppl_history, starting_epoch, rng = state
best_ppl = min(validation_ppl_history)
else:
rng = np.random
rng.seed(1)
print("Building model...")
net = models.GRUstage2(
rng=rng,
x=x,
minibatch_size=MINIBATCH_SIZE,
n_hidden=num_hidden,
x_vocabulary=word_vocabulary,
y_vocabulary=punctuation_vocabulary,
stage1_model_file_name=stage1_model_file_name,
p=p
)
starting_epoch = 0
best_ppl = np.inf
validation_ppl_history = []
gsums = [theano.shared(np.zeros_like(param.get_value(borrow=True))) for param in net.params]
cost = net.cost(y) + L2_REG * net.L2_sqr
gparams = T.grad(cost, net.params)
updates = OrderedDict()
# Compute norm of gradients
norm = T.sqrt(T.sum(
[T.sum(gparam ** 2) for gparam in gparams]
))
# Adagrad: "Adaptive subgradient methods for online learning and stochastic optimization" (2011)
for gparam, param, gsum in zip(gparams, net.params, gsums):
gparam = T.switch(
T.ge(norm, CLIPPING_THRESHOLD),
gparam / norm * CLIPPING_THRESHOLD,
gparam
) # Clipping of gradients
updates[gsum] = gsum + (gparam ** 2)
updates[param] = param - lr * (gparam / (T.sqrt(updates[gsum] + 1e-6)))
train_model = theano.function(
inputs=[x, p, y, lr],
outputs=cost,
updates=updates
)
validate_model = theano.function(
inputs=[x, p, y],
outputs=net.cost(y)
)
print("Training...")
for epoch in range(starting_epoch, MAX_EPOCHS):
t0 = time()
total_neg_log_likelihood = 0
total_num_output_samples = 0
iteration = 0
for X, Y, P in get_minibatch(data.TRAIN_FILE2, MINIBATCH_SIZE, shuffle=True, with_pauses=True):
total_neg_log_likelihood += train_model(X, P, Y, learning_rate)
total_num_output_samples += np.prod(Y.shape)
iteration += 1
if iteration % 100 == 0:
sys.stdout.write("PPL: %.4f; Speed: %.2f sps\n" % (np.exp(total_neg_log_likelihood / total_num_output_samples), total_num_output_samples / max(time() - t0, 1e-100)))
sys.stdout.flush()
print("Total number of training labels: %d" % total_num_output_samples)
total_neg_log_likelihood = 0
total_num_output_samples = 0
for X, Y, P in get_minibatch(data.DEV_FILE2, MINIBATCH_SIZE, shuffle=False, with_pauses=True):
total_neg_log_likelihood += validate_model(X, P, Y)
total_num_output_samples += np.prod(Y.shape)
print("Total number of validation labels: %d" % total_num_output_samples)
ppl = np.exp(total_neg_log_likelihood / total_num_output_samples)
validation_ppl_history.append(ppl)
print("Validation perplexity is %s" % np.round(ppl, 4))
if ppl <= best_ppl:
best_ppl = ppl
net.save(model_file_name, gsums=gsums, learning_rate=learning_rate, validation_ppl_history=validation_ppl_history, best_validation_ppl=best_ppl, epoch=epoch, random_state=rng.get_state())
elif best_ppl not in validation_ppl_history[-PATIENCE_EPOCHS:]:
print("Finished!")
break