-
Notifications
You must be signed in to change notification settings - Fork 194
/
play_with_model.py
110 lines (77 loc) · 3.08 KB
/
play_with_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# coding: utf-8
from __future__ import division, print_function
import models
import data
import theano
import sys
from io import open
import theano.tensor as T
import numpy as np
def to_array(arr, dtype=np.int32):
# minibatch of 1 sequence as column
return np.array([arr], dtype=dtype).T
def convert_punctuation_to_readable(punct_token):
if punct_token == data.SPACE:
return " "
else:
return punct_token[0]
def punctuate(predict, word_vocabulary, punctuation_vocabulary, reverse_punctuation_vocabulary, reverse_word_vocabulary, text, f_out, show_unk):
if len(text) == 0:
sys.exit("Input text from stdin missing.")
text = [w for w in text.split() if w not in punctuation_vocabulary] + [data.END]
i = 0
while True:
subsequence = text[i:i+data.MAX_SEQUENCE_LEN]
if len(subsequence) == 0:
break
converted_subsequence = [word_vocabulary.get(w, word_vocabulary[data.UNK]) for w in subsequence]
if show_unk:
subsequence = [reverse_word_vocabulary[w] for w in converted_subsequence]
y = predict(to_array(converted_subsequence))
f_out.write(subsequence[0])
last_eos_idx = 0
punctuations = []
for y_t in y:
p_i = np.argmax(y_t.flatten())
punctuation = reverse_punctuation_vocabulary[p_i]
punctuations.append(punctuation)
if punctuation in data.EOS_TOKENS:
last_eos_idx = len(punctuations) # we intentionally want the index of next element
if subsequence[-1] == data.END:
step = len(subsequence) - 1
elif last_eos_idx != 0:
step = last_eos_idx
else:
step = len(subsequence) - 1
for j in range(step):
f_out.write(" " + punctuations[j] + " " if punctuations[j] != data.SPACE else " ")
if j < step - 1:
f_out.write(subsequence[1+j])
if subsequence[-1] == data.END:
break
i += step
if __name__ == "__main__":
if len(sys.argv) > 1:
model_file = sys.argv[1]
else:
sys.exit("Model file path argument missing")
show_unk = False
if len(sys.argv) > 2:
show_unk = bool(int(sys.argv[2]))
x = T.imatrix('x')
print("Loading model parameters...")
net, _ = models.load(model_file, 1, x)
print("Building model...")
predict = theano.function(inputs=[x], outputs=net.y)
word_vocabulary = net.x_vocabulary
punctuation_vocabulary = net.y_vocabulary
reverse_word_vocabulary = {v:k for k,v in net.x_vocabulary.items()}
reverse_punctuation_vocabulary = {v:k for k,v in net.y_vocabulary.items()}
with open(sys.stdout.fileno(), 'w', encoding='utf-8', closefd=False) as f_out:
while True:
try:
text = raw_input("\nTEXT: ").decode('utf-8')
except NameError:
text = input("\nTEXT: ")
punctuate(predict, word_vocabulary, punctuation_vocabulary, reverse_punctuation_vocabulary, reverse_word_vocabulary, text, f_out, show_unk)
f_out.flush()