-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathextensions.py
52 lines (42 loc) · 1.61 KB
/
extensions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import copy
import chainer.functions as F
from chainer import Variable
from chainer.dataset import convert
from chainer.dataset import iterator as iterator_module
from chainer import link
from chainer import reporter as reporter_module
from chainer.training import extensions
class TestModeEvaluator(extensions.Evaluator):
def __init__(self, iterator, updater, converter=convert.concat_examples,
device=None, eval_hook=None):
if isinstance(iterator, iterator_module.Iterator):
iterator = {'main': iterator}
self._iterators = iterator
if isinstance(updater.model, link.Link):
self._targets = {'main': updater.model}
else:
self._targets = updater.model
self.updater = updater
self.converter = converter
self.device = device
self.eval_hook = eval_hook
def evaluate(self):
iterator = self.get_iterator('main')
all_targets = self.get_all_targets()
for model in all_targets.values():
if hasattr(model, 'train'):
model.train = False
if self.eval_hook:
self.eval_hook(self)
it = copy.copy(iterator)
summary = reporter_module.DictSummary()
for batch in it:
observation = {}
with reporter_module.report_scope(observation):
self.updater.forward(batch)
self.updater.calc_loss()
summary.add(observation)
for model in all_targets.values():
if hasattr(model, 'train'):
model.train = True
return summary.compute_mean()