-
Notifications
You must be signed in to change notification settings - Fork 386
/
Copy pathdebounce_v2_tb.sv
220 lines (179 loc) · 4.6 KB
/
debounce_v2_tb.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
//------------------------------------------------------------------------------
// debounce_v2_tb_tb.sv
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, [email protected]
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// debounce_v2 testbench
// use this define to make some things differently in simulation
`define SIMULATION yes
`timescale 1ns / 1ps
module debounce_v2_tb();
initial begin
// Print out time markers in nanoseconds
// Example: $display("[T=%0t] start=%d", $realtime, start);
$timeformat(-9, 3, " ns");
// seed value setting is intentionally manual to achieve repeatability between sim runs
$urandom( 1 ); // SEED value
end
logic clk200;
sim_clk_gen #(
.FREQ( 200_000_000 ), // in Hz
.PHASE( 0 ), // in degrees
.DUTY( 50 ), // in percentage
.DISTORT( 10 ) // in picoseconds
) clk200_gen (
.ena( 1'b1 ),
.clk( clk200 ),
.clkd( )
);
logic nrst_once;
logic [31:0] clk200_div;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( clk200_div[31:0] )
);
logic [31:0] clk200_div_rise;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.anrst( {32{nrst_once}} ),
.in( clk200_div[31:0] ),
.rising( clk200_div_rise[31:0] ),
.falling( ),
.both( )
);
// external device "asynchronous" clock
logic clk33;
logic clk33d;
sim_clk_gen #(
.FREQ( 200_000_000 ), // in Hz
.PHASE( 0 ), // in degrees
.DUTY( 50 ), // in percentage
.DISTORT( 1000 ) // in picoseconds
) clk33_gen (
.ena( 1'b1 ),
.clk( clk33 ),
.clkd( clk33d )
);
logic rst;
initial begin
rst = 1'b0; // initialization
repeat( 1 ) @(posedge clk200);
forever begin
repeat( 1 ) @(posedge clk200); // synchronous rise
rst = 1'b1;
//$urandom( 1 ); // uncomment to get the same random pattern EVERY nrst
repeat( 2 ) @(posedge clk200); // synchronous fall, controls rst pulse width
rst = 1'b0;
repeat( 100 ) @(posedge clk200); // controls test body width
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
rst_once = 1'b0; // initialization
repeat( 1 ) @(posedge clk200);
repeat( 1 ) @(posedge clk200); // synchronous rise
rst_once = 1'b1;
repeat( 2 ) @(posedge clk200); // synchronous fall, controls rst_once pulse width
rst_once = 1'b0;
end
//logic nrst_once; // declared before
assign nrst_once = ~rst_once;
// random pattern generation
logic [31:0] rnd_data;
always_ff @(posedge clk200) begin
rnd_data[31:0] <= $urandom;
end
initial forever begin
@(posedge nrst);
$display("[T=%0t] rnd_data[]=%h", $realtime, rnd_data[31:0]);
end
// helper start strobe appears unpredictable up to 20 clocks after nrst
logic start;
initial forever begin
start = 1'b0; // initialization
@(posedge nrst); // synchronous rise after EVERY nrst
repeat( $urandom_range(0, 20) ) @(posedge clk200);
start = 1'b1;
@(posedge clk200); // synchronous fall exactly 1 clock after rise
start = 1'b0;
end
initial begin
// #10000 $stop;
// #10000 $finish;
end
// sweeping pulses
logic sp = 1'b1;
logic [4:0] sp_duty_cycle = 8'd0;
initial forever begin
if( sp_duty_cycle[4:0] == 0 ) begin
sp = 1'b1;
repeat( 10 ) @(posedge clk200);
end
sp = 1'b0;
repeat( 1 ) @(posedge clk200);
sp = 1'b1;
repeat( 1 ) @(posedge clk200);
sp = 1'b0;
repeat( sp_duty_cycle ) @(posedge clk200);
sp_duty_cycle[4:0] = sp_duty_cycle[4:0] + 1'b1; // overflow is expected here
end
// Module under test ===========================================================
logic [15:0] seq_cntr = '0;
logic [31:0] id = '0;
always_ff @(posedge clk200) begin
if( ~nrst_once ) begin
seq_cntr[15:0] <= '0;
id[31:0] <= '0;
end else begin
// incrementing sequence counter
if( seq_cntr[15:0]!= '1 ) begin
seq_cntr[15:0] <= seq_cntr[15:0] + 1'b1;
end
if( seq_cntr[15:0]<300 ) begin
id[31:0] <= '1;
//id[31:0] <= {4{rnd_data[15:0]}};
end else begin
id[31:0] <= '0;
end
end
end
debounce_v2 #(
.WIDTH( 8 ),
.SAMPLING_FACTOR( 2 )
) M (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.in( rnd_data[7:0] ),
.out( )
);
debounce_v2 #(
.WIDTH( 8 ),
.SAMPLING_FACTOR( 2 ),
.TREAT_UNSTABLE_AS_HIGH( 1 )
) MH (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.in( rnd_data[7:0] ),
.out( )
);
debounce_v2 #(
.WIDTH( 8 ),
.SAMPLING_FACTOR( 2 ),
.TREAT_UNSTABLE_AS_LOW( 1 )
) ML (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.in( rnd_data[7:0] ),
.out( )
);
endmodule