-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdirect_module.py
196 lines (112 loc) · 4.71 KB
/
direct_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os,sys,importlib_resources
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib as plt
# +
# if no model is given, will use the direct final trained model stored in ./models/
package_resources = importlib_resources.files("direct_module")
model_path = os.path.join(package_resources,'models/direct_models/direct_256u_3l_4t_MODEL')
# -
class MLP(nn.Module):
def __init__(self, input_size, num_hidden_units, num_hidden_layers, output_size,activate='relu'):
super().__init__()
self.activate = activate
self.module_list = nn.ModuleList([])
self.module_list.append(nn.Linear(input_size,num_hidden_units))
for k in range(num_hidden_layers-1):
self.module_list.append(nn.Linear(num_hidden_units, num_hidden_units))
self.module_list.append(nn.Linear(num_hidden_units,output_size))
def forward(self, x):
for f in self.module_list[:-1]:
x = f(x)
if self.activate == 'relu':
x = F.relu(x)
elif self.activate == 'sigmoid':
x = F.sigmoid(x)
x = self.module_list[-1](x)
return x
def train_MLP(model_config, train_config, train_set, valid_set):
input_size = model_config['input_size']
output_size = model_config['output_size']
num_hidden_units = model_config['num_hidden_units']
num_hidden_layers = model_config['num_hidden_layers']
activate = model_config['activate']
lr = train_config['lr']
num_epochs = train_config['num_epochs']
batchsize = train_config['batchsize']
weight_decay = train_config['weight_decay']
learn_log = train_config['learn_log']
trials = int(len(train_set)/batchsize)
model = MLP(input_size, num_hidden_units, num_hidden_layers, output_size, activate)
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay = weight_decay)
valid_loss = np.zeros(num_epochs)
train_loss = np.zeros(num_epochs)
for e in range(num_epochs):
print('Epoch: ',e+1)
# set up model
model.train()
# shuffle data (indeces)
idx = torch.randperm(train_set.shape[0])
t_shuffled = train_set[idx]
# set up array to store losses
trial_loss = np.zeros(trials)
for i in range(trials):
trial_set = t_shuffled[batchsize*i:batchsize*i+batchsize]
if learn_log == 'True':
true_prob = torch.log(trial_set[:,-1].view(-1,1))
else:
true_prob = trial_set[:,-1].view(-1,1)
rate_vec = trial_set[:,0:-1]
optimizer.zero_grad()
pred_prob = model(rate_vec)
if learn_log == 'True':
loss = F.mse_loss(pred_prob,true_prob,reduction='mean')
else:
loss = F.mse_loss(pred_prob,true_prob,reduction='sum')
trial_loss[i] = loss.item()
loss.backward()
optimizer.step()
train_loss[e] = np.mean(trial_loss)
# check on validation data
model.eval()
valid_true_prob = torch.log(valid_set[:,-1].view(-1,1))
valid_rate_vec = valid_set[:,0:-1]
valid_pred_prob = model(valid_rate_vec)
v_loss = F.mse_loss(valid_pred_prob,valid_true_prob)
valid_loss[e] = torch.mean(v_loss)
return train_loss, valid_loss, model
class TrainedModel():
def __init__(self, path, input_size, num_hidden_units, num_hidden_layers, output_size):
meta = np.load(path + '_meta.npy',allow_pickle=True)
self.meta = meta
self.train_loss = meta[0]
self.valid_loss = meta[1]
self.model_config = meta[2]
self.train_config = meta[3]
input_size = self.model_config['input_size']
output_size = self.model_config['output_size']
num_hidden_layers = self.model_config['num_hidden_layers']
num_hidden_units = self.model_config['num_hidden_units']
self.model = mdl.MLP(input_size, num_hidden_units, num_hidden_layers, output_size)
self.model.load_state_dict(torch.load(path+'_MODEL'))
self.model.eval()
# load in model
model_direct = MLP(input_size=5, num_hidden_units = 256, num_hidden_layers = 3, output_size = 1)
model_direct.load_state_dict(torch.load(model_path))
model_direct.eval()
def predict_pmf(rate_vec,n_len,m_len,model=model_direct):
a = np.ones((n_len,m_len))
b = np.arange(n_len).reshape(-1,1)
n = np.multiply(b,a).flatten()
rate_vecs = torch.tensor([rate_vec[0],rate_vec[1],rate_vec[2],0,0],dtype=torch.float).repeat(m_len*n_len,1)
rate_vecs[:,-1] = torch.arange(m_len).repeat(n_len)
rate_vecs[:,-2] = torch.tensor(n)
logP = model(rate_vecs).detach().numpy().flatten()
predicted_pdf = np.exp(logP).reshape((n_len,m_len))
return predicted_pdf
def predict_point(rate_vec,n,m,model=model_direct):
vec = torch.tensor([rate_vec[0],rate_vec[1],rate_vec[2],n,m],dtype=torch.float)
logP = model(vec).detach().numpy()
return np.exp(logP)