-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
65 lines (55 loc) · 2.25 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
from torch.autograd import Variable
from MNISTparameters import ImageEncoder, ImageDecoder, LabelEncoder, LabelDecoder, Z_DIMS
class MVAE(nn.Module):
def __init__(self):
super(MVAE, self).__init__()
self.image_encoder = ImageEncoder()
self.image_decoder = ImageDecoder()
self.label_encoder = LabelEncoder()
self.label_decoder = LabelDecoder()
def reparametrize(self, means, logvar):
if self.training:
eps = Variable(torch.Tensor(means.shape).normal_())
return means + eps * logvar.mul(0.5).exp_()
else:
return means
def prior_expert(self, size):
# N(0, 1)
means = Variable(torch.zeros(size))
logvar = Variable(torch.zeros(size))
return means, logvar
# Mix gaussians
def product_of_experts(self, means, logvar):
P = 1.0 / torch.exp(logvar)
Psum = P.sum(dim=0)
prod_means = torch.sum(means * P, dim=0) / Psum
prod_logvar = torch.log(1.0 / Psum)
return prod_means, prod_logvar
def forward(self, image=None, label=None):
means, logvar = self.encode_modalities(image, label)
z = self.reparametrize(means, logvar)
# Reconstruct
decoded_img = self.image_decoder(z)
decoded_lbl = self.label_decoder(z)
return decoded_img, decoded_lbl, means, logvar
def encode_modalities(self, image=None, label=None):
if (image is not None):
batch_size = image.size(0)
else:
batch_size = label.size(0)
# Initialization
means, logvar = self.prior_expert((1, batch_size, Z_DIMS))
# Support for weak supervision setting
if image is not None:
img_mean, img_logvar = self.image_encoder(image)
means = torch.cat((means, img_mean.unsqueeze(0)))
logvar = torch.cat((logvar, img_logvar.unsqueeze(0)))
if label is not None:
lbl_mean, lbl_logvar = self.label_encoder(label)
means = torch.cat((means, lbl_mean.unsqueeze(0)))
logvar = torch.cat((logvar, lbl_logvar.unsqueeze(0)))
# Combine the gaussians
means, logvar = self.product_of_experts(means, logvar)
return means, logvar