-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathengine_finetune_clip.py
354 lines (281 loc) · 13.3 KB
/
engine_finetune_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import os
import numpy as np
import math
import sys
from typing import Iterable, Optional
import torch
import torch.distributed as dist
from timm.data import Mixup
from timm.utils import accuracy
import utils.misc as misc
import utils.lr_sched as lr_sched
from torchvision import transforms
import cv2
from PIL import Image
import torch.nn as nn
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None, log_writer=None,
args=None):
model.train(True)
num_frames = args.num_frames
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
if args.data_set == 'SSV2' or args.data_set == 'Kinetics':
print_freq = 1000
else:
print_freq = 100
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
samples, targets = batch[0], batch[1]
batch_size = samples.shape[0]
in_channels = samples.shape[1]
frame_size = samples.shape[3]
block_width = 4
num_temporal_frame = int(num_frames / (block_width ** 2))
spatial_stride = int(num_frames / 8)
resize = transforms.Resize((frame_size, frame_size))
samples_t = samples
samples_s = samples[:, :, 0::spatial_stride, :, :]
samples_t = samples_t.reshape(batch_size, in_channels, num_temporal_frame, int(block_width ** 2), frame_size, frame_size)
samples_t = samples_t.reshape(batch_size, in_channels, num_temporal_frame, block_width, block_width, frame_size, frame_size)
samples_t = samples_t.permute(0, 1, 2, 3, 5, 4, 6)
samples_t = samples_t.reshape(batch_size * in_channels * num_temporal_frame, block_width * frame_size, block_width * frame_size)
samples_t = resize(samples_t).reshape(batch_size, in_channels, num_temporal_frame, frame_size, frame_size)
samples = torch.cat([samples_t, samples_s], dim=2)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
if samples.shape[2] != 1:
samples = samples.permute(0, 2, 1, 3, 4) # B x Ts+Tt x C x W x H
samples = samples.reshape(batch_size * (8 + num_temporal_frame), in_channels, frame_size, frame_size)
elif samples.shape[2] == 1:
samples = samples.squeeze()
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
if hasattr(model, 'module'):
output = model.module.encode_image(samples)
else:
output = model.encode_image(samples)
output = output.squeeze()
loss = criterion(output, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', max_lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 100, header):
images = batch[0]
target = batch[1] # TODO: check why default use -1
images = images.squeeze()
batch_size, in_channels, num_frames, frame_size, _ = images.shape
block_width = 4
num_temporal_frame = int(num_frames / (block_width ** 2))
resize = transforms.Resize((frame_size, frame_size))
spatial_stride = int(num_frames / 8)
samples_t = images
samples_s = images[:, :, 0::spatial_stride, :, :]
samples_t = samples_t.reshape(batch_size, in_channels, num_temporal_frame, int(block_width ** 2), frame_size, frame_size)
samples_t = samples_t.reshape(batch_size, in_channels, num_temporal_frame, block_width, block_width, frame_size, frame_size)
samples_t = samples_t.permute(0, 1, 2, 3, 5, 4, 6)
samples_t = samples_t.reshape(batch_size * in_channels * num_temporal_frame, block_width * frame_size, block_width * frame_size)
samples_t = resize(samples_t).reshape(batch_size, in_channels, num_temporal_frame, frame_size, frame_size)
images = torch.cat([samples_t, samples_s], dim=2)
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
if num_frames != 1:
images = images.permute(0, 2, 1, 3, 4)
images = images.reshape(batch_size * (8 + num_temporal_frame), in_channels, frame_size, frame_size)
elif num_frames == 1:
images = images.squeeze()
# compute output
with torch.cuda.amp.autocast():
if hasattr(model, 'module'):
output = model.module.encode_image(images)
else:
output = model.encode_image(images)
output = output.squeeze()
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def final_test(data_loader, model, device, file, args):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Final_Test:'
# switch to evaluation mode
model.eval()
final_result = []
for batch in metric_logger.log_every(data_loader, 100, header):
images = batch[0]
target = batch[1]
ids = batch[2]
chunk_nb = batch[3]
split_nb = batch[4]
batch_size = images.shape[0]
num_frames = images.shape[2]
image_channel = images.shape[1]
image_size = images.shape[3]
block_width = 4
num_temporal_frame = int(num_frames / (block_width ** 2))
resize = transforms.Resize((image_size, image_size))
spatial_stride = int(num_frames / 8)
samples_t = images
samples_s = images[:, :, 0::spatial_stride, :, :]
samples_t = samples_t.reshape(batch_size, image_channel, num_temporal_frame, int(block_width ** 2), image_size, image_size)
samples_t = samples_t.reshape(batch_size, image_channel, num_temporal_frame, block_width, block_width, image_size, image_size)
samples_t = samples_t.permute(0, 1, 2, 3, 5, 4, 6)
samples_t = samples_t.reshape(batch_size * image_channel * num_temporal_frame, block_width * image_size, block_width * image_size)
samples_t = resize(samples_t).reshape(batch_size, image_channel, num_temporal_frame, image_size, image_size)
images = torch.cat([samples_t, samples_s], dim=2)
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
if num_frames != 1:
images = images.permute(0, 2, 1, 3, 4)
images = images.reshape(batch_size * (8 + num_temporal_frame), image_channel, image_size, image_size)
elif num_frames == 1:
images = images.squeeze()
# compute output
with torch.cuda.amp.autocast():
if hasattr(model, 'module'):
output = model.module.encode_image(images)
else:
output = model.encode_image(images)
loss = criterion(output, target)
for i in range(output.size(0)):
string = "{} {} {} {} {}\n".format(
ids[i], str(output.data[i].cpu().numpy().tolist()), str(int(target[i].cpu().numpy())),
str(int(chunk_nb[i].cpu().numpy())), str(int(split_nb[i].cpu().numpy()))
)
final_result.append(string)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
if not os.path.exists(file):
os.mknod(file)
with open(file, 'w') as f:
f.write("{}, {}\n".format(acc1, acc5))
for line in final_result:
f.write(line)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def merge(eval_path, num_tasks, is_hmdb=False):
dict_feats = {}
dict_label = {}
dict_pos = {}
print("Reading individual output files")
for x in range(num_tasks):
file = os.path.join(eval_path, str(x) + '.txt')
lines = open(file, 'r').readlines()[1:]
for line in lines:
line = line.strip()
name = line.split('[')[0]
label = line.split(']')[1].split(' ')[1]
chunk_nb = line.split(']')[1].split(' ')[2]
split_nb = line.split(']')[1].split(' ')[3]
data = np.fromstring(line.split('[')[1].split(']')[0], dtype=np.float, sep=',')
if not name in dict_feats:
dict_feats[name] = []
dict_label[name] = 0
dict_pos[name] = []
if chunk_nb + split_nb in dict_pos[name]:
continue
dict_feats[name].append(data)
dict_pos[name].append(chunk_nb + split_nb)
dict_label[name] = label
print("Computing final results")
input_lst = []
print(len(dict_feats))
for i, item in enumerate(dict_feats):
input_lst.append([i, item, dict_feats[item], dict_label[item]])
from multiprocessing import Pool
p = Pool(64)
ans = p.map(compute_video_hmdb if is_hmdb else compute_video, input_lst)
top1 = [x[1] for x in ans]
top5 = [x[2] for x in ans]
pred = [x[0] for x in ans]
label = [x[3] for x in ans]
final_top1 ,final_top5 = np.mean(top1), np.mean(top5)
return final_top1*100 ,final_top5*100
def compute_video(lst):
i, video_id, data, label = lst
feat = [x for x in data]
feat = np.mean(feat, axis=0)
pred = np.argmax(feat)
top1 = (int(pred) == int(label)) * 1.0
top5 = (int(label) in np.argsort(-feat)[:5]) * 1.0
return [pred, top1, top5, int(label)]
def compute_video_hmdb(lst):
i, video_id, data, label = lst
feat = [x for x in data]
feat = np.mean(feat, axis=0)
try:
pred = np.argmax(feat)
top1 = (int(pred) == int(label)) * 1.0
top5 = (int(label) in np.argsort(-feat)[:5]) * 1.0
except:
pred = 0
top1 = 1.0
top5 = 1.0
label = 0
return [pred, top1, top5, int(label)]