-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathalgorithm.py
554 lines (394 loc) · 26 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
"""
This file comprises a set of algorithms used for the purpose of training
"""
#----------------------------- Importing modules -----------------------------#
import os
import gymnasium as gym
import torch
import torch.optim as optim
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import pickle
from replay_buffer import ReplayBuffer
from network import OrnsteinUhlenbeckNoise
#------------------------------ Initialization -------------------------------#
class ALGORITHM:
def __init__(self, actor_model, criticQ1_model, criticQ2_model, criticV_model,
env, default_parameters, **hyperparameters):
# Calling the environment
self.env = env
# Calling default parameters and algorithm hyperparameters from main.py
self._init_parameters(hyperparameters, default_parameters)
# Extract out dimensions of observation and action spaces
assert(type(env.observation_space) == gym.spaces.Box)
assert(type(env.action_space) == gym.spaces.Box)
self.obs_dim = env.observation_space.shape[0]
self.act_dim = env.action_space.shape[0]
# Initialize actor and critic networks and replay buffer for SAC
if self.algorithm_name == 'SAC':
# Initialize Actor network and optimizer
self.actor = actor_model(self.obs_dim, self.act_dim, self.hidden_dim_actor)
self.actor_optim = optim.Adamax(self.actor.parameters(), lr=self.lr_actor,
weight_decay=self.weight_decay_actor)
# Initialize critic networks and optimizers
self.softq_critic1 = criticQ1_model(self.act_dim, self.obs_dim, self.hidden_dim_critic)
self.softq_critic2 = criticQ2_model(self.act_dim, self.obs_dim, self.hidden_dim_critic)
self.q_optimizer1 = optim.Adamax(self.softq_critic1.parameters(), lr=self.lr_critic, weight_decay=self.weight_decay_critic)
self.q_optimizer2 = optim.Adamax(self.softq_critic2.parameters(), lr=self.lr_critic, weight_decay=self.weight_decay_critic)
# Initialize target critic networks
self.softq_critic_target1 = criticQ1_model(self.act_dim, self.obs_dim, self.hidden_dim_critic)
self.softq_critic_target2 = criticQ2_model(self.act_dim, self.obs_dim, self.hidden_dim_critic)
# Initialize replay buffer
self.replaybuffer = ReplayBuffer(self.replay_size, a_dim=self.act_dim,
a_dtype=np.float32, s_dim=self.obs_dim, s_dtype=np.float32, store_mu=False)
# Initialize temperature hyperparameter
self.log_alpha = torch.zeros(1, requires_grad=True)
self.alpha_optim = optim.Adamax([self.log_alpha], lr=self.lr_alpha, weight_decay=self.weight_decay_alpha)
# Initialize target entropy parameter
self.target_entropy = -self.act_dim
# Initialize actor and critic networks and replay buffer for DDPG
if self.algorithm_name == 'DDPG':
# Initialize Actor network and optimizer
self.actor = actor_model(self.obs_dim, self.act_dim, self.hidden_dim_actor)
self.actor_optim = optim.Adamax(self.actor.parameters(), lr=self.lr_actor,
weight_decay=self.weight_decay_actor)
# Initialize critic networks and optimizer
self.softq_critic1 = criticQ1_model(self.act_dim, self.obs_dim, self.hidden_dim_critic)
self.q_optimizer1 = optim.Adamax(self.softq_critic1.parameters(), lr=self.lr_critic, weight_decay=self.weight_decay_critic)
# Initialize target actor network
self.actor_target = actor_model(self.obs_dim, self.act_dim, self.hidden_dim_actor)
# Initialize target critic network
self.softq_critic_target1 = criticQ1_model(self.act_dim, self.obs_dim, self.hidden_dim_critic)
# Initialize replay buffer
self.replaybuffer = ReplayBuffer(self.replay_size, a_dim=self.act_dim,
a_dtype=np.float32, s_dim=self.obs_dim, s_dtype=np.float32, store_mu=False)
self.ou_noise = OrnsteinUhlenbeckNoise(self.act_dim, self.mu, self.theta, self.sigma)
# Initialize actor and value function for PPO
if self.algorithm_name == 'PPO':
# Initialize Actor network and optimizer
self.actor = actor_model(self.obs_dim, self.act_dim, self.hidden_dim_actor)
self.actor_optim = optim.Adamax(self.actor.parameters(), lr=self.lr_actor,
weight_decay=self.weight_decay_actor)
# Initialize value function and the optimizer
self.softV_critic = criticV_model(self.act_dim, self.obs_dim, self.hidden_dim_critic)
self.V_optimizer = optim.Adamax(self.softV_critic.parameters(), lr=self.lr_critic, weight_decay=self.weight_decay_critic)
# Initialize the covariance matrix used to query the actor for actions
self.cov_var = torch.full(size=(self.act_dim,), fill_value=0.5)
self.cov_mat = torch.diag(self.cov_var)
# create logger to help printing out summaries of iterations
self.logger = {
'batch_ep_rew': [], # initialize the logger for rewards per episode in iteration
'i_so_far': 0, # initialize the iterations ran so far
}
# other initial values
self.reward_plot = [] # initialize the collection of average reward per iteration for reward plot
#---------------------------- Calling parameters -----------------------------#
# calling parameters from main.py
def _init_parameters(self, hyperparameters, default_parameters):
# Calling algorithm hyperparameters from main.py
for param, val in hyperparameters.items():
if isinstance(val, str) == False:
exec('self.' + param + ' = ' + str(val))
# Calling default parameters from main.py
for param, val in default_parameters.items():
if isinstance(val, str) == False:
exec('self.' + param + ' = ' + str(val))
self.render = default_parameters.get('render')
self.algorithm_name = default_parameters.get('algorithm_name')
self.timesteps_per_iteration = self.episodes_per_iteration * self.timesteps_per_episode # Number of timesteps per iteration
# Seed for random number generators
if self.seed != None:
assert(type(self.seed) == int)
torch.manual_seed(self.seed)
#--------------------------------- Training ----------------------------------#
def learn(self, total_timesteps):
# train the actor and critic networks
for self.epoch_no in range(self.epoch):
t_so_far = 0 # initialize the timestep so far
i_so_far = 0 # initialize the iterations so far
self.num_episodes = 0 # initialize the number of episodes
while t_so_far < total_timesteps:
# collecting batch of actions, observations and rewards and etc. from the simulation
batch_obs, batch_act, batch_log_probs, batch_rew, batch_next_obs, batch_done, batch_lens = self.rollout()
t_so_far += np.sum(batch_lens) # timesteps ran so far
self.logger['t_so_far'] = t_so_far
self.logger['i_so_far'] = i_so_far # iterations ran so far
# put the collection of data in algorithms
# SAC algorithm:
if self.algorithm_name == 'SAC':
self.SAC(batch_obs, batch_act, batch_rew, batch_next_obs, batch_done)
if self.batch_size < len(self.replaybuffer):
self._log_summary()
# saving the actor and critic networks for SAC
if i_so_far % self.freq_ac_save == 0:
torch.save(self.actor.state_dict(), './sac_actor.pth')
torch.save(self.softq_critic1.state_dict(), './sac_critic1.pth')
torch.save(self.softq_critic2.state_dict(), './sac_critic2.pth')
# DDPG algorithm:
elif self.algorithm_name == 'DDPG':
self.DDPG(batch_obs, batch_act, batch_rew, batch_next_obs, batch_done)
if self.batch_size < len(self.replaybuffer):
self._log_summary()
# saving the actor and critic networks for SAC
if i_so_far % self.freq_ac_save == 0:
torch.save(self.actor.state_dict(), './ddpg_actor.pth')
torch.save(self.softq_critic1.state_dict(), './ddpg_critic.pth')
# PPO algorithm:
elif self.algorithm_name == 'PPO':
self.PPO(batch_obs, batch_act, batch_log_probs, batch_rew, batch_next_obs, batch_done)
self._log_summary()
# saving the actor and critic networks for SAC
if i_so_far % self.freq_ac_save == 0:
torch.save(self.actor.state_dict(), './ppo_actor.pth')
torch.save(self.softV_critic.state_dict(), './ppo_Vcritic.pth')
# Shack-Hartmann method
elif self.algorithm_name == 'SHACK':
self._log_summary()
i_so_far += 1 # iterations ran so far
#--------------------------------- Rollout -----------------------------------#
# collecting batch of actions, observations and rewards and etc. from the simulation
def rollout(self):
# Initialize the batches
batch_obs = np.zeros((self.timesteps_per_iteration,self.obs_dim)) # initialization of collection of observations
batch_act = np.zeros((self.timesteps_per_iteration,self.act_dim)) # initialization of collection of actions
batch_log_probs = np.zeros((self.timesteps_per_iteration)) # initialization of collection of actions log probability
batch_rew = np.zeros((self.timesteps_per_iteration)) # initialization of collection of rewards per iteration
batch_ep_rew = np.zeros((self.episodes_per_iteration,self.timesteps_per_episode)) # initialization of collection of rewards per episode in iteration
batch_next_obs = np.zeros((self.timesteps_per_iteration,self.obs_dim)) # initialization of collection of next observations
batch_done = np.zeros((self.timesteps_per_iteration)) # initialization of collection of done
batch_lens = np.zeros((self.timesteps_per_iteration)) # initialization of the length of each episode
t = 0 # count how many timesteps we've run
t_iteration = 0 # count how many iterations we've run
# run for a maximum number of timesteps per iteration (episodes_per_iteration * timesteps_per_episode)
while t < (self.timesteps_per_iteration):
# rewards collected per episode
ep_rew = np.zeros((self.timesteps_per_episode))
# reset the environment for new episode
obs, _ = self.env.reset()
done = False
# run for a maximum number of timesteps per episode
for ep_t in range(self.timesteps_per_episode):
# render the environment
if self.render and (self.num_episodes % self.freq_render == 0) and batch_lens[0] == 0:
self.env.render()
# Collect the observation from simulation
batch_obs[t,:] = obs
# The action of Shack-Hartmann is generated through the environment.
if self.algorithm_name == 'SHACK':
action, log_prob = self.env.SH_step() # getting next action from Shack-Hartmann
else:
action, log_prob = self.actor.get_action(obs, self.cov_mat) # getting next action from actor
if self.algorithm_name == 'DDPG':
action += self.ou_noise.sample()
# observation, reward and done from simulation
obs, rew, done, _, _ = self.env.step(action)
next_obs = obs
batch_act[t,:] = action # collection of the actions
batch_log_probs[t] = log_prob # collection of actions log probability
batch_rew[t] = rew # collection of rewards per iteration
ep_rew[ep_t] = rew # collection of rewards per episode
batch_next_obs[t,:] = next_obs # collection of the next observations
batch_done[t] = done # collection of done
t += 1 # count how many timesteps we've run
# if at the end of the episode, break:
if done:
break
self.num_episodes += 1
batch_ep_rew[t_iteration, :] = ep_rew # collection of rewards per episode in iteration
batch_lens[t_iteration] = ep_t + 1 # collection of the length of each episode
t_iteration += 1 # count how many iterations we've run
# reshape the batches to tensors
batch_obs = torch.tensor(batch_obs, dtype=torch.float)
batch_act = torch.tensor(batch_act, dtype=torch.float)
batch_log_probs = torch.tensor(batch_log_probs, dtype=torch.float)
batch_rew = torch.tensor(batch_rew, dtype=torch.float)
batch_next_obs = torch.tensor(batch_next_obs, dtype=torch.float)
batch_done = torch.tensor(batch_done, dtype=torch.float)
# add the batches to logger to give information about the training
self.logger['batch_ep_rew'] = batch_ep_rew
return batch_obs, batch_act, batch_log_probs, batch_rew, batch_next_obs, batch_done, batch_lens
#---------------------- reshape to tensors -----------------------------------#
# reshape the batch of transition to tensors
def reshape_to_tensor(self, s, a, r, next_s, done):
s = torch.FloatTensor(s)
a = torch.FloatTensor(a)
r = torch.FloatTensor(r).unsqueeze(1)
next_s = torch.FloatTensor(next_s)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1)
return s, a, r, next_s, done
#----------------------------- Loss function ---------------------------------#
def get_loss(self, val, next_val):
criterion = nn.MSELoss()
return criterion(val, next_val)
#------------------------------ algorithms -----------------------------------#
#----------------------------- SAC algorithm ---------------------------------#
"""
This SAC algorithm is following the SAC pseudocode by OpenAI.
The pseudocode can be found here --> https://spinningup.openai.com/en/latest/_images/math/c01f4994ae4aacf299a6b3ceceedfe0a14d4b874.svg
"""
def SAC(self, state, action, reward, next_state, done):
# store state, action, reward, next action and done in replay buffer
for i in range(len(state)):
self.replaybuffer.add(state[i], action[i], reward[i], next_state[i], done[i])
# Initial filling of the replay buffer
if self.batch_size < len(self.replaybuffer):
# Number of updates for each iteration
for _ in range(self.updates_per_iteration):
# randomly sample a batch of transitions from replay buffer
s, a, r, next_s, d = self.replaybuffer.sample_batch(self.batch_size, self.seed)
# reshape the batch of transition to tensors
s, a, r, next_s, d = self.reshape_to_tensor(s, a, r, next_s, d)
# Control the randomness by increasing it by one
self.seed += 1
with torch.no_grad():
# calculate next action and action log probability
next_state_action, next_state_log_pi, _ = self.actor.evaluate(next_s, a, self.cov_mat)
# calculate the next target Q-networks
qf1_next_target = self.softq_critic_target1(next_s, next_state_action)
qf2_next_target = self.softq_critic_target2(next_s, next_state_action)
min_qf_next_target = torch.min(qf1_next_target, qf2_next_target) - self.alpha * next_state_log_pi.unsqueeze(1)
# compute targets for the Q-networsks
next_q_value = r + self.gamma * (min_qf_next_target)
# update the Q-networks
qf1 = self.softq_critic1(s, a)
qf2 = self.softq_critic2(s, a)
qf1_loss = self.get_loss(qf1, next_q_value)
qf2_loss = self.get_loss(qf2, next_q_value)
self.softq_critic1.train(qf1_loss, self.q_optimizer1)
self.softq_critic2.train(qf2_loss, self.q_optimizer2)
# calculate next action and action log probability
pi, log_pi, _ = self.actor.evaluate(s, a, self.cov_mat)
# compute the updated Q-networks
qf1_pi = self.softq_critic1(s, pi)
qf2_pi = self.softq_critic2(s, pi)
min_qf_pi = torch.min(qf1_pi, qf2_pi)
# Update the policy
actor_loss = ((self.alpha * log_pi) - min_qf_pi).mean()
self.actor.train(actor_loss, self.actor_optim)
# update the target Q-networks
for target_param, param in zip(self.softq_critic_target1.parameters(), self.softq_critic1.parameters()):
target_param.data.copy_(target_param.data * (1.0 - self.polyak) + param.data * self.polyak)
for target_param, param in zip(self.softq_critic_target2.parameters(), self.softq_critic2.parameters()):
target_param.data.copy_(target_param.data * (1.0 - self.polyak) + param.data * self.polyak)
# Update the temperature hyperparameter.
# Below equation is taken from --> https://arxiv.org/abs/1812.05905
alpha_loss = -(self.log_alpha * (log_pi + self.target_entropy).detach()).mean()
self.alpha_optim.zero_grad()
alpha_loss.backward(retain_graph=True)
self.alpha_optim.step()
self.alpha = self.log_alpha.exp()
# prevent the temperature to go below specific value for 'semi-learned temperature'
if self.alpha.item() < self.alpha_min:
self.alpha = torch.tensor([self.alpha_min], requires_grad=True)
#-----------------------------------------------------------------------------#
#---------------------------- DDPG algorithm ---------------------------------#
"""
This DDPG algorithm is following the DDPG pseudocode by OpenAI.
The pseudocode can be found here --> https://spinningup.openai.com/en/latest/_images/math/5811066e89799e65be299ec407846103fcf1f746.svg
"""
def DDPG(self, state, action, reward, next_state, done):
# reward normalization (mean-std normalization)
reward = (reward - reward.mean()) / (reward.std() + 1e-10)
# store state, action, reward, next action and done in replay buffer
for i in range(len(state)):
self.replaybuffer.add(state[i], action[i], reward[i], next_state[i], done[i])
# Initial filling of the replay buffer
if self.batch_size < len(self.replaybuffer):
# Number of updates for each iteration
for _ in range(self.updates_per_iteration):
# randomly sample a batch of transitions from replay buffer
s, a, r, next_s, d = self.replaybuffer.sample_batch(self.batch_size, self.seed)
# reshape the batch of transition to tensors
s, a, r, next_s, d = self.reshape_to_tensor(s, a, r, next_s, d)
# Control the randomness by increasing it by one
self.seed += 1
with torch.no_grad():
# calculate next action and action log probability from target actor
next_state_action, _, _ = self.actor_target.evaluate(next_s, a, self.cov_mat)
# calculate the next target Q-network
qf1_next_target = self.softq_critic_target1(next_s, next_state_action)
# compute targets for the Q-networsk
next_q_value = r + self.gamma * (qf1_next_target)
# update the Q-network
qf1 = self.softq_critic1(s, a)
qf1_loss = self.get_loss(qf1, next_q_value)
self.softq_critic1.train(qf1_loss, self.q_optimizer1)
# calculate next action and action log probability
pi, _, _ = self.actor.evaluate(s, a, self.cov_mat)
# Update the policy
actor_loss = -self.softq_critic1(s, pi).mean()
self.actor.train(actor_loss, self.actor_optim)
# update the target actor and Q-network
for target_param, param in zip(self.softq_critic_target1.parameters(), self.softq_critic1.parameters()):
target_param.data.copy_(target_param.data * (1.0 - self.polyak) + param.data * self.polyak)
for target_param, param in zip(self.actor_target.parameters(), self.actor.parameters()):
target_param.data.copy_(target_param.data * (1.0 - self.polyak) + param.data * self.polyak)
#-----------------------------------------------------------------------------#
#---------------------------- PPO algorithm ----------------------------------#
"""
This PPO algorithm is following the PPO pseudocode by OpenAI.
The pseudocode can be found here --> https://spinningup.openai.com/en/latest/_images/math/e62a8971472597f4b014c2da064f636ffe365ba3.svg
"""
def PPO(self, state, action, log_probs, reward, next_state, done):
# compute the value function
V = self.softV_critic(state).squeeze()
# compute the advantage function
A_k = reward - V.detach()
A_k = (A_k - A_k.mean()) / (A_k.std() + 1e-10) # advantage function normalization
# Number of updates for each iteration
for _ in range(self.updates_per_iteration):
# compute the value function
V = self.softV_critic(state).squeeze()
# compute the current action log probability
_, _, curr_log_probs = self.actor.evaluate(state, action, self.cov_mat)
# calculate the ration from previous policy and current policy
ratios = torch.exp(curr_log_probs - log_probs)
# calculate the “surrogate” objective function
surr1 = ratios * A_k
surr2 = torch.clamp(ratios, 1 - self.clip, 1 + self.clip) * A_k # clipping the probability ratio
# update the actor and critic networks
actor_loss = (-torch.min(surr1, surr2)).mean()
critic_loss = self.get_loss(V, reward)
self.actor.train(actor_loss, self.actor_optim)
self.softV_critic.train(critic_loss, self.V_optimizer)
#-----------------------------------------------------------------------------#
#-------------------------------logger summary--------------------------------#
def _log_summary(self):
# calculate the average reward per iteration
avg_ep_rews = np.mean([np.sum(ep_rew) for ep_rew in self.logger['batch_ep_rew']])
avg_ep_rews = avg_ep_rews/self.timesteps_per_episode
# collection of average reward per iteration for reward plot
self.reward_plot.append(avg_ep_rews)
# display the logger/information of the training process
if self.logger['i_so_far'] % self.freq_log == 0:
print(flush=True)
print(f"----------------------------------------------------------", flush=True)
print(f" timesteps so far: {int(self.logger['t_so_far'])}", flush=True)
print(f" episodes so far: {(self.logger['i_so_far'] +1)*self.episodes_per_iteration}", flush=True)
print(f" iterations so far: {self.logger['i_so_far'] +1}", flush=True)
print(f" Average reward: {str(round(avg_ep_rews, 2))}", flush=True)
print(f"----------------------------------------------------------", flush=True)
print(flush=True)
# display reward plots
if self.logger['i_so_far'] % self.freq_rew == 0 and (len(self.reward_plot) > 1):
# create the folder for reward plots:
# try:
# os.makedirs('./reward_plot/epoch_' + str(self.epoch_no+1))
# except OSError:
# pass
# plot the rewards
plt.plot(self.reward_plot,'b')
plt.title('cost plot per iteration')
plt.xlabel('training iterations')
plt.ylabel('Average cost: %f' % (np.round(self.reward_plot[-1],3)))
plt.grid()
#plt.savefig('./reward_plot/epoch_' + str(self.epoch_no+1)+'/rewards_iteration_' + str(int(len(self.reward_plot))) + ".png")
plt.show(block=False)
plt.pause(1)
plt.clf()
plt.close()
# save the data of the reward plot
with open('rewards.pkl', 'wb') as f:
pickle.dump(self.reward_plot, f)
#-----------------------------------------------------------------------------#