Skip to content

Latest commit

 

History

History
53 lines (45 loc) · 2.02 KB

README.md

File metadata and controls

53 lines (45 loc) · 2.02 KB

General info

Digital communication simulation in Python.

Features

  • Modulation Schemes: BPSK, QPSK, 4-QAM, 16-QAM, 256-QAM

    • Transmission and reception over a noisy (AWGN) channel with signal-to-noise ratio from 0 to 9dB.
    • Parity test at the receiver: if the received data is different from parity setting at the transmitter do an automatic-repeat-request and retransmit the word.
    • Determine bit error rate.
    • Plot I-Q constellation diagram.
  • Forward Error Correction: BCH code, Convolutional Code

    • Simulation over a noisy channel using QPSK.

    • Determine bit error rate.

    • Coding and decoding using (n,k) BCH codes.

      m n k t
      3 7 4 1
      4 15 5 3
      5 31 6 7
      6 63 16 11
    • Coding and decoding using convolutional code using soft(or)hard decoding.

alt text

  • Differential Coding

  • Costas Loop

    • BPSK modulation/demodulation.
    • Carrier Recovery using Costas Loop.
    • Implement differential coding to deal with any ambiguity in the recovered data.

alt text

Prerequisites

pip install komm
Anaconda enviroment recommended

Installation

git clone https://github.com/pdadial/pyComm.git

Usage

  • Modulation Schemes

    • Run sim_mod.py specifing one of the modulation schemes: BPSKQPSK4-QAM16-QAM256-QAM
      python sim_mod.py --scheme QPSK
  • Forward Error Correction

    • Run bch_codes.py specifing -m and -t values for corresponding (n,k) BCH code.
      python bch_codes.py -m 3 -t 1
    • Run conv_codes.py specifing decoding decision method (soft/hard).
      python conv_codes.py -d soft

Acknowledgement

This project was part of the course Digital Communication, taught by dchutchings of University of Glasgow