-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdataloaders.py
318 lines (279 loc) · 12.3 KB
/
dataloaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import random
import pickle
from PIL import Image
from pycocotools.coco import COCO
from torchvision import datasets, transforms
import torch.utils.data as data
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
NUM_CLASSES = {
'aircraft': 100, 'dtd': 47, 'vgg-flowers': 102,
'cifar100': 100, 'svhn': 10, 'omniglot': 1623,
'ucf101': 101, 'daimlerpedcls': 2, 'gtsrb': 43,
'imagenet12': 1000
}
CATEGORY_ID_BASE = {
'aircraft': 10000000, 'dtd': 40000000, 'vgg-flowers': 100000000,
'cifar100': 20000000, 'svhn': 80000000, 'omniglot': 70000000,
'ucf101': 90000000, 'daimlerpedcls': 30000000, 'gtsrb': 50000000,
'imagenet12': 60000000
}
def pil_loader(path):
return Image.open(path).convert('RGB')
class MyImageFolder(datasets.ImageFolder):
def __init__(self, root, transform=None, loader=pil_loader):
super(MyImageFolder, self).__init__(root=root, transform=transform, loader=pil_loader)
self.id2img = {path.replace(self.root, ''): path for path, _ in self.imgs[index]}
def __getitem__(self, index):
path, target = self.imgs[index]
img = pil_loader(path)
if self.transform is not None:
img = self.transform(img)
iid = path.replace(self.root, '')
return img, target, iid
class SVHNDataset(datasets.svhn.SVHN):
def __init__(self, data_root, split, transform=None, download=True):
super(SVHNDataset, self).__init__(root=data_root, split=split, transform=transform, download=download)
self.id2img = {'{}_{:06d}'.format(self.split, index): index for index in range(len(self))}
def __getitem__(self, index):
img, target = self.data[index], int(self.labels[index])
img = Image.fromarray(np.transpose(img, (1, 2, 0)))
if self.transform is not None:
img = self.transform(img)
iid = '{}_{:06d}'.format(self.split, index)
return img, target, iid
class VOC12Dataset(MyImageFolder):
def __init__(self, data_root, transform=None, loader=pil_loader, balance=False):
super(VOC12Dataset, self).__init__(root=data_root, transform=transform, loader=pil_loader)
if balance:
final_idx = []
for cls_desc, cls in self.class_to_idx.items():
idx = [i for i, (fn, lbl) in enumerate(self.samples) if lbl == cls]
final_idx.extend([random.choice(idx) for _ in range(1000)])
self.samples = [self.samples[i] for i in final_idx]
class DecathlonImageFolder(data.Dataset):
_repr_indent = 2
def __init__(self, root, imgs=None, labels=None, transform=None, dataset=None, classes=None):
if len(imgs) == 0:
raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.dataset = dataset
self.imgs = imgs
self.labels = labels
self.transform = transform
self.num_classes = NUM_CLASSES[dataset]
self.category_ids = list(range(CATEGORY_ID_BASE[dataset]+1, CATEGORY_ID_BASE[dataset]+NUM_CLASSES[dataset]+1))
self.classes = classes
self.id2img = {iid: img for img, iid in self.imgs}
def __getitem__(self, index):
img_id = self.imgs[index][1]
img = pil_loader(self.imgs[index][0])
if self.transform is not None:
img = self.transform(img)
target = self.labels[index] if self.labels is not None else 0
return img, target, img_id
def __len__(self):
return len(self.imgs)
def __repr__(self):
head = "Dataset " + self.dataset
body = ["Number of datapoints: {}".format(self.__len__())]
if self.root is not None:
body.append("Root location: {}".format(self.root))
if hasattr(self, 'transform') and self.transform is not None:
body += self._format_transform_repr(self.transform,
"Transforms: ")
if hasattr(self, 'target_transform') and self.target_transform is not None:
body += self._format_transform_repr(self.target_transform,
"Target transforms: ")
lines = [head] + [" " * self._repr_indent + line for line in body]
return '\n'.join(lines)
def _format_transform_repr(self, transform, head):
lines = transform.__repr__().splitlines()
return (["{}{}".format(head, lines[0])] +
["{}{}".format(" " * len(head), line) for line in lines[1:]])
def get_dataset(dataset, mode):
image_size = 256
crop_size = 224
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
if dataset == 'svhn':
# Data augmentation
if mode == 'train':
transform = transforms.Compose([
transforms.Scale(image_size),
transforms.RandomCrop(crop_size),
transforms.ToTensor(),
normalize,
])
split = 'train'
else:
transform = transforms.Compose([
transforms.Scale(image_size),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
normalize,
])
split = 'test'
dataset = SVHNDataset('data/svhn', split=split, transform=transform, download=True)
dataset.num_classes = 10
elif dataset == 'flowers':
# Data augmentation
if mode == 'train':
transform = transforms.Compose([
transforms.Resize(image_size),
transforms.RandomSizedCrop(crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
transform = transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
normalize,
])
data_root = 'data/flowers/{}'.format('trainval' if mode=='train' else 'test')
dataset = MyImageFolder(root=data_root, transform=transform, loader=pil_loader)
dataset.num_classes = 102
elif dataset == 'voc12':
if mode == 'train':
transform = transforms.Compose([
transforms.Resize((crop_size, crop_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
split = 'train'
balance = True
else:
transform = transforms.Compose([
transforms.Resize((crop_size, crop_size)),
transforms.ToTensor(),
normalize,
])
split = 'test'
balance = False
data_root = 'data/voc12/{}'.format(split)
dataset = VOC12Dataset(data_root=data_root, transform=transform, loader=pil_loader, balance=balance)
dataset.num_classes = 20
return dataset
def get_decathlon_dataset(dataset, partitions):
data_root = 'data/decathlon-1.0'
data_root = '/data/imgDB/DB/decathlon-1.0/'
if not isinstance(partitions, list):
partitions = [partitions]
if 'test_stripped' in partitions:
assert len(partitions) == 1
# Get image files and labels
images, category_ids = [], []
for partition in partitions:
coco = COCO('{}/annotations/{}_{}.json'.format(data_root, dataset, partition))
imgIds = coco.getImgIds()
images += [('{}/{}'.format(data_root, img['file_name']), img['id']) for img in coco.loadImgs(imgIds)]
if partition != 'test_stripped':
category_ids += [int(ann['category_id']) for ann in coco.loadAnns(coco.getAnnIds(imgIds=imgIds))]
if partitions[0] != 'test_stripped':
labels = [cat - CATEGORY_ID_BASE[dataset] - 1 for cat in category_ids]
else:
labels = None
# Load normalization constants
with open(data_root + '/decathlon_mean_std.pickle', 'rb') as handle:
try:
dict_mean_std = pickle.load(handle)
except Exception:
dict_mean_std = pickle.load(handle, encoding='bytes')
means = dict_mean_std[(dataset + 'mean').encode('UTF-8')]
stds = dict_mean_std[(dataset + 'std').encode('UTF-8')]
# Transformations
if partitions[0] == 'train':
if dataset in ['svhn', 'omniglot']: # no horz flip
transform = transforms.Compose([
transforms.Resize(72),
transforms.RandomCrop(64),
transforms.ToTensor(),
transforms.Normalize(means, stds),
])
elif dataset in ['aircraft', 'daimlerpedcls', 'cifar100']:
transform = transforms.Compose([
transforms.Resize((72, 72)),
transforms.Pad(8, padding_mode='reflect'),
transforms.RandomCrop(72),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(means, stds),
])
elif dataset in ['gtsrb']: # Color jitter
transform = transforms.Compose([
transforms.Resize((72, 72)),
transforms.Pad(8, padding_mode='reflect'),
transforms.RandomCrop(72),
transforms.ColorJitter(brightness=0.5, contrast=0.2, saturation=0.2, hue=0.),
transforms.ToTensor(),
transforms.Normalize(means, stds),
])
elif dataset in ['dtd']:
transform = transforms.Compose([
transforms.Resize(72),
transforms.RandomCrop(72),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(means, stds),
])
else:
transform = transforms.Compose([
transforms.Resize(72),
transforms.RandomCrop(64),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(means, stds),
])
else:
if dataset in ['omniglot', 'svhn']: # no horz flip
transform = transforms.Compose([
transforms.Resize(72),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(means, stds),
])
elif dataset in ['aircraft', 'daimlerpedcls', 'cifar100', 'gtsrb']:
transform = transforms.Compose([
transforms.Resize((72, 72)),
transforms.ToTensor(),
transforms.Normalize(means, stds),
])
elif dataset in ['dtd']:
transform = transforms.Compose([
transforms.Resize(72),
transforms.CenterCrop(72),
transforms.ToTensor(),
transforms.Normalize(means, stds),
])
else:
transform = transforms.Compose([
transforms.Resize(72),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(means, stds),
])
# Dataset
return DecathlonImageFolder(data_root, imgs=images, labels=labels, transform=transform, dataset=dataset, classes=coco.cats)
def get_dataloader(dataset, batch_size=1, shuffle=True, mode='train', num_workers=4):
if dataset.startswith('decathlon'):
partitions = ['train', 'val'] if mode == 'train' else ['test']
dataset = get_decathlon_dataset(dataset.split('/')[1], partitions)
else:
dataset = get_dataset(dataset, mode)
loader = data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True)
return loader
if __name__ == '__main__':
import time
import sys
import numpy as np
loader = get_dataloader(dataset='svhn', mode='train', batch_size=64, num_workers=2)
print(loader.dataset)
img, lbl, fn = loader.dataset[0]
print(np.array(img).shape)