-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain_teacher.py
210 lines (174 loc) · 8.76 KB
/
main_teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import time
import datetime
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
from models import teacher_resnet, teacher_resnet_wide
import proj_utils
import dataloaders
parser = argparse.ArgumentParser()
parser.add_argument('--task', default='cifar100', help='task to train')
parser.add_argument('--arch', default='resnet34', help='teacher architecture (default: resnet34)')
parser.add_argument('--model-dir', default='experiments/default', help='model directory')
parser.add_argument('--evaluate', action='store_true', help='evaluate model on validation set')
parser.add_argument('--epochs', default=90, type=int, help='number of total epochs to run')
parser.add_argument('--batch-size', default=256, type=int, help='mini-batch size (default: 256)')
parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--lr-decay-epochs', default=30, type=int, help='number of epochs for each lr decay')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight-decay', default=0.0005, type=float, help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', default=10, type=int, help='print frequency (default: 10 iter)')
parser.add_argument('--eval-freq', default=5, type=int, help='print frequency (default: 5 epochs)')
parser.add_argument('--workers', default=4, type=int, help='number of data loading workers (default: 4)')
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--log2file', action='store_true', help='log output to file (under model_dir/train.log)')
args = parser.parse_args()
proj_utils.prep_output_folder(args.model_dir, args.evaluate)
DEVICE = torch.device("cuda:0")
def main():
mode = 'train' if not args.evaluate else 'eval'
logger = proj_utils.Logger(args.log2file, mode=mode, model_dir=args.model_dir)
# Args
logger.add_line(str(datetime.datetime.now()))
logger.add_line("="*30+" Arguments "+"="*30)
for k in args.__dict__:
logger.add_line(' {:30}: {}'.format(k, str(args.__dict__[k])))
# Data
if mode == 'train':
train_loader = dataloaders.get_dataloader(
dataset=args.task,
batch_size=args.batch_size,
shuffle=True,
mode=mode,
num_workers=args.workers)
logger.add_line("\n"+"="*30+" Train data "+"="*30)
logger.add_line(str(train_loader.dataset))
val_loader = dataloaders.get_dataloader(
dataset=args.task,
batch_size=args.batch_size,
shuffle=False,
mode='eval',
num_workers=args.workers)
num_classes = train_loader.dataset.num_classes
logger.add_line("\n"+"="*30+" Validation data "+"="*30)
logger.add_line(str(val_loader.dataset))
elif mode == 'eval':
test_loader = dataloaders.get_dataloader(
dataset=args.task,
batch_size=args.batch_size,
shuffle=False,
mode=mode,
num_workers=args.workers)
num_classes = test_loader.dataset.num_classes
logger.add_line("\n"+"="*30+" Test data "+"="*30)
logger.add_line(str(test_loader.dataset))
# Model
if args.arch.startswith('resnet'):
model = teacher_resnet.create_teacher(args.arch, pretrained=True, num_classes=num_classes)
elif args.arch.startswith('wide_resnet'):
model = teacher_resnet_wide.create_teacher(args.arch, pretrained=True, num_classes=num_classes)
model = model.to(DEVICE)
logger.add_line("="*30+" Model "+"="*30)
logger.add_line(str(model))
logger.add_line("="*30+" Parameters "+"="*30)
logger.add_line(proj_utils.parameter_description(model))
#Loss
criterion = nn.CrossEntropyLoss()
############################ TRAIN #########################################
if mode == 'train':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
for epoch in range(args.epochs):
# Train for one epoch
logger.add_line("="*30+" Train (Epoch {}) ".format(epoch)+"="*30)
optimizer = proj_utils.adjust_learning_rate(optimizer, epoch, args.lr, args.lr_decay_epochs, logger)
train(train_loader, model, criterion, optimizer, epoch, logger)
if epoch % args.eval_freq == args.eval_freq-1 or epoch == args.epochs-1:
# Evaluate on validation set
logger.add_line("="*30+" Valid (Epoch {}) ".format(epoch)+"="*30)
err, acc, run_time = validate(val_loader, model, criterion, logger, epoch)
# remember best err and save checkpoint
proj_utils.save_checkpoint(
args.model_dir,
{'epoch': epoch + 1,
'state_dict': model.state_dict(),
'err': err,
'acc': acc})
############################ EVAL #########################################
elif mode == 'eval':
fn = args.model_dir + '/checkpoint.pth.tar'
model.load_state_dict(torch.load(fn)['state_dict'])
err, acc, run_time = validate(test_loader, model, criterion, logger)
logger.add_line('='*30+' COMPLETED '+'='*30)
logger.add_line('[RUN TIME] {time.avg:.3f} sec/sample'.format(time=run_time))
logger.add_line('[FINAL] {name:<30} {loss:.7f}'.format(name='crossentropy', loss=err))
logger.add_line('[FINAL] {name:<30} {acc:.7f}'.format(name='accuracy', acc=acc))
def train(data_loader, model, criterion, optimizer, epoch, logger):
batch_time = proj_utils.AverageMeter()
data_time = proj_utils.AverageMeter()
loss_avg = proj_utils.AverageMeter()
acc_avg = proj_utils.AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (images, labels, _) in enumerate(data_loader):
images, labels = images.to(DEVICE), labels.to(DEVICE)
if images.size(0) != args.batch_size:
break
# measure data loading time
data_time.update(time.time() - end)
# compute output
logit, _ = model(images)
loss = criterion(logit, labels)
loss_avg.update(loss.item(), images.size(0))
acc = proj_utils.accuracy(logit, labels)
acc_avg.update(acc.item(), images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 or i+1 == len(data_loader):
logger.add_line(
"TRAIN [{:5}][{:5}/{:5}] | Time {:16} Data {:16} Accuracy {:18} Loss {:16}".format(
str(epoch), str(i), str(len(data_loader)),
"{t.val:.3f} ({t.avg:.3f})".format(t=batch_time),
"{t.val:.3f} ({t.avg:.3f})".format(t=data_time),
"{t.val:.3f} ({t.avg:.3f})".format(t=acc_avg),
"{t.val:.3f} ({t.avg:.3f})".format(t=loss_avg),
))
def validate(data_loader, model, criterion, logger, epoch=None):
batch_time = proj_utils.AverageMeter()
loss_avg = proj_utils.AverageMeter()
acc_avg = proj_utils.AverageMeter()
# switch to evaluate mode
model.eval()
image_ids, preds = [], []
with torch.no_grad():
end = time.time()
for i, (images, labels, _) in enumerate(data_loader):
images, labels = images.to(DEVICE), labels.to(DEVICE)
# compute output
logits, _ = model(images)
loss = criterion(logits, labels)
loss_avg.update(loss.item(), images.size(0))
acc = proj_utils.accuracy(logits, labels)
acc_avg.update(acc.item(), images.size(0))
# measure elapsed time
batch_time.update(time.time() - end, images.size(0))
end = time.time()
if i % args.print_freq == 0 or i+1 == len(data_loader):
logger.add_line(
"Test [{:5}][{:5}/{:5}] | Time {:20} Accuracy {:20} Loss {:20}".format(
str(epoch), str(i), str(len(data_loader)),
"{t.val:.3f} ({t.avg:.3f})".format(t=batch_time),
"{t.val:.3f} ({t.avg:.3f})".format(t=acc_avg),
"{t.val:.3f} ({t.avg:.3f})".format(t=loss_avg),
))
return loss_avg.avg, acc_avg.avg, batch_time
if __name__ == '__main__':
main()