-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathevaluate_under_over.py
186 lines (161 loc) · 7.77 KB
/
evaluate_under_over.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import scipy
import pickle
import argparse
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn.neighbors import NearestNeighbors
from functools import reduce
import matplotlib.pyplot as plt
import sys
sys.path.append('./pointnet2/kitti')
from utils import *
kitti_dir = './kitti/object'
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='kitti_object')
parser.add_argument('--split', type=str, default='val')
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--method', type=str, choices=['segmenter', 'detector'], required=True)
parser.add_argument('--res-dirs', type=str, nargs='+', required=True)
parser.add_argument('--out-dir', type=str, default='segmentation/underseg_overseg/segmentation_output')
return parser.parse_args()
def read_results(method, res_dirs, id_):
segs, scores = [], []
if method == 'segmenter':
assert(len(res_dirs) == 1)
res_file = '%s/%06d.pkl' % (res_dirs[0], id_)
if os.path.exists(res_file):
with open(res_file, 'rb') as f:
scores = pickle.load(f)
segs = pickle.load(f)
elif method == 'detector':
dets = []
for res_dir in res_dirs:
res_file = '%s/%06d.txt' % (res_dir, id_)
if not os.path.exists(res_file):
print('warning: cannot find results at %s' % res_file)
continue
dets.extend(read_detection(res_file))
segs, scores, _ = convert_dets_to_segs(pts_velo_cs, velo_to_cam_tf, dets)
return segs, scores
args = parse_args()
#
with open('./kitti/object/%s.txt' % args.split) as f:
ids = [int(l.rstrip()) for l in f]
eval_dir = os.path.join(args.out_dir, args.split, args.name, 'obj_eval')
if not os.path.exists(eval_dir): os.makedirs(eval_dir)
for id_ in ids:
# load calibration
calib_file = '%s/training/calib/%06d.txt' % (kitti_dir, id_)
velo_to_cam_tf = read_calibration(calib_file)
# load raw velodyne scan
velo_file = '%s/training_clean/velodyne/%06d.bin' % (kitti_dir, id_)
pts_velo_cs = np.fromfile(velo_file, np.float32).reshape((-1,4))[:,:3]
# filter point cloud with ground truth bounding boxes
gt_file = '%s/training/label_2/%06d.txt' % (kitti_dir, id_)
gtdets = read_detection(gt_file)
gtsegs, gtclasses = convert_gtdets_to_gtsegs(pts_velo_cs, velo_to_cam_tf, gtdets)
# read predictions (segmentation or detection)
# res_dirs = [os.path.join('results', args.dataset, res_dir) for res_dir in args.res_dirs]
# NOTE: results/kitti are only for some of the methods
segs, scores = read_results(args.method, args.res_dirs, id_)
# figure out left overs
leftovers = np.arange(len(pts_velo_cs))
if len(segs) > 0 and len(reduce(np.union1d, segs)) > 0:
leftovers = np.setdiff1d(leftovers, reduce(np.union1d, segs))
if args.method == 'segmenter':
# assert(len(leftovers) == 0)
if len(leftovers) > 0:
print('Warning: non-empty leftover set (%d)' % (len(leftovers)))
elif args.method == 'detector':
# process leftovers
if len(leftovers) > 0:
#
leftover_eps = 1.0
# first, segment leftovers
model = DBSCAN(leftover_eps, min_samples=1).fit(pts_velo_cs[leftovers,:3])
labels = model.labels_
lo_segs = []
for unique_label in np.unique(labels):
inds = np.flatnonzero(labels == unique_label)
lo_segs.append(leftovers[inds])
# second, try connecting leftover segs to existing segs
# if everything is leftover, nothing to connect to
if len(leftovers) == len(pts_velo_cs):
segs = lo_segs
scores = [float('nan') for s in lo_segs]
# if there are existing segments
else:
# linearize points in the existing segments
all_pts_list = [] # actual points
all_seg_ids = [] # segment id for each point
for i in range(len(segs)):
all_pts_list.append(pts_velo_cs[segs[i]])
all_seg_ids.extend([i for _ in segs[i]])
all_pts = np.concatenate(all_pts_list, axis=0)
assert(len(all_pts) == len(all_seg_ids)) # make sure length match
# build a nearest neighbor index
nbrs = NearestNeighbors(n_neighbors=1, algorithm='auto').fit(all_pts)
# try connecting every leftover segment to an existing one
for lo_seg in lo_segs:
# extract actual points for the leftover segment
lo_seg_points = pts_velo_cs[lo_seg,:]
# retrieve every point's nearest neighbor from existing segments
dists, inds = nbrs.kneighbors(lo_seg_points)
# if the nearest neighbor of all has a larger distance than eps
# we simply add the leftover segment as a standalone segment
if np.min(dists) > leftover_eps:
segs.append(lo_seg)
scores.append(float('nan'))
# if this leftover is connected to an existing segment (will choose the closest)
else:
# get which point from linearized existing segments is closest to leftover
idx = inds[np.argmin(dists), 0] # 0 for 1-nearest neighbor
seg_id = all_seg_ids[idx]
# merge the leftover segment into that existing segment
segs[seg_id] = np.append(segs[seg_id], lo_seg, axis=0)
# no need to change the score
# # make sure this is a valid segment
# if len(segs) > 0:
# assert(len(reduce(np.union1d, segs)) == len(pts_velo_cs))
# for i in range(len(segs)):
# for j in range(i+1, len(segs)):
# assert(len(np.intersect1d(segs[i], segs[j])) == 0)
# find out which ground truth overlaps with each other
gt_has_ovlp = np.full((len(gtsegs), len(gtsegs)), False, bool)
for i in range(len(gtsegs)):
for j in range(i+1, len(gtsegs)):
test = len(np.intersect1d(gtsegs[i], gtsegs[j])) > 0
gt_has_ovlp[j][i] = gt_has_ovlp[i][j] = test
# NOTE:: this might actually be a fucking bug...
# gt_has_ovlp = np.all(gt_has_ovlp, axis=1)
gt_has_ovlp = np.any(gt_has_ovlp, axis=1)
#
eval_file = os.path.join(eval_dir, '%06d.txt' % id_)
eval_fd = open(eval_file, 'w')
for i in range(len(gtsegs)):
# David's evaluation script will ignore such ground truth segments anyways
if len(gtsegs[i]) == 0: continue
# extract info about detection (if it is available)
pos_points_all = np.array([len(np.intersect1d(gtsegs[i], segs[j])) for j in range(len(segs))])
max_pos_points = np.max(pos_points_all)
J = np.flatnonzero(pos_points_all == max_pos_points)
# if there are multiple segments that have the same size of intersection
# pick the one with least points (something we can optimize)
if len(J) > 1:
jmax = J[np.argmin([len(segs[j]) for j in J])]
else:
jmax = J[0]
#
pos_points = pos_points_all[jmax]
blob_points = len(segs[jmax])
other_pos_points = len(gtsegs[i]) - pos_points
if len(pts_velo_cs) > 0 and len(gtsegs[i]) > 0:
gt_dist = np.sqrt(np.sum(pts_velo_cs[gtsegs[i],:].mean(axis=0)**2))
else:
gt_dist = 80
eval_fd.write('%d %s -1 %f %f -1 %f -1 -1 %f -1 -1 %f -1 %f -1 -1 %f\n' % (
id_, gtclasses[i], pos_points, blob_points, other_pos_points, gt_dist, 0, -1, gt_has_ovlp[i]
))
eval_fd.close()