- Download the HIBER Dataset from HIBER ( Human Indoor Behavior Exclusive RF dataset ).
# 1. Create a conda virtual environment.
conda create -n SDM python=3.6
conda activate SDM
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
# 2. Clone the Repo and Install dependencies
git clone https://github.com/ph-w2000/SDM
pip install -r requirements.txt
This code supports multi-GPUs training.
python -m torch.distributed.launch --nproc_per_node=1 --master_port 48949 train.py -batch_size 8
- You can change the training hyperparameters in train.py file, such as dataset path, batch_size etc.
- To switch "WALK" dataset to "MULTI", you can change it in hiber_dataset.py file.
python -m torch.distributed.launch --nproc_per_node=1 --master_port 48949 test.py -batch_size 8
- You can change the training hyperparameters in test.py file, such as dataset path, batch_size etc.
- To switch "WALK" dataset to "MULTI", you can change it in hiber_dataset.py file.
please switch to branch "fine-tune" get run stage2 code.
If you use the results and code for your research, please cite our paper:
@INPROCEEDINGS{10688347,
author={Wen, Penghui and Hu, Kun and Yua, Dong and Ning, Zhiyuan and Li, Changyang and Wang, Zhiyong},
booktitle={2024 IEEE International Conference on Multimedia and Expo (ICME)},
title={Radio Frequency Signal based Human Silhouette Segmentation: A Sequential Diffusion Approach},
year={2024},
volume={},
number={},
pages={1-6},
keywords={Wireless communication;Radio frequency;Wireless sensor networks;Motion segmentation;Dynamics;RF signals;Diffusion models;Wireless sensing;semantic segmentation;diffusion model;radio frequency},
doi={10.1109/ICME57554.2024.10688347}}