-
Notifications
You must be signed in to change notification settings - Fork 47
/
magic_init.py
450 lines (402 loc) · 17 KB
/
magic_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
from __future__ import print_function, division
INPUT_LAYERS = ['Data', 'ImageData', 'Input']
# Layers that only support elwise
ELWISE_LAYERS = ['Deconvolution']
# Layers that support parameters
PARAMETER_LAYERS = ['Convolution', 'InnerProduct']+ELWISE_LAYERS
# All supported layers
SUPPORTED_LAYERS = ['ReLU', 'Sigmoid', 'LRN', 'Pooling', 'Eltwise'] + PARAMETER_LAYERS + INPUT_LAYERS
STRIP_LAYER = ['Softmax', 'SoftmaxWithLoss', 'SigmoidCrossEntropyLoss']
# Use 'Dropout' at your own risk
# Unless Jon merges #2865 , 'Split' cannot be supported
UNSUPPORTED_LAYERS = ['Split', 'BatchNorm', 'Reshape']
def forward(net, i, NIT, data, output_names):
n = net._layer_names[i]
# Create the top data if needed
output = {t: [None]*NIT for t in output_names}
for it in range(NIT):
for b in data:
net.blobs[b].data[...] = data[b][it]
net._forward(i, i)
for t in output_names:
output[t][it] = 1*net.blobs[t].data
return output
def flattenData(data):
import numpy as np
return np.concatenate([d.swapaxes(0, 1).reshape((d.shape[1],-1)) for d in data], axis=1).T
def gatherInputData(net, layer_id, bottom_data, top_name, fast=False, max_data=None):
# This functions gathers all input data.
# In order to not replicate all the internal functionality of convolutions (eg. padding ...)
# we gather the data in the output space and use random gaussian weights. The output of this
# function is W and D, there the input data I = D * W^-1 [with some abuse of tensor notation]
# If we not compute an initialization A for D, we then simply multiply A by W to obtain the
# proper initialization in the input space
import numpy as np
l = net.layers[layer_id]
NIT = len(list(bottom_data.values())[0])
# How many times do we need to over-sample to get a full basis (out of random projections)
OS = int(np.ceil( np.prod(l.blobs[0].data.shape[1:]) / l.blobs[0].data.shape[0] ))
if fast: OS = 1
# If we are over sampling we might run out of memory at some point, especially for filters higher up
# Do avoid any issues we never return more than max_data number of elements
subsample = None
# Note this could cause some memory issues in the FC layers
W, D = [], []
for i in range(OS):
d = l.blobs[0].data
d[...] = np.random.normal(0, 1, d.shape)
W.append(1*d)
# Collect the data and flatten out the convs
data = np.concatenate([i.swapaxes(0, 1).reshape((i.shape[1],-1)).T for i in forward(net, layer_id, NIT, bottom_data, [top_name])[top_name]], axis=0)
# Do we need to subsample the data to save memory?
if subsample is None and max_data is not None:
# Randomly select n data representative samples
N = int(max_data / (data.shape[1]*OS))
subsample = np.arange(data.shape[0])
if N < data.shape[0]:
np.random.shuffle(subsample)
subsample = subsample[:N]
if subsample is not None:
data = data[subsample]
D.append(data)
# In order to handle any sort of groups we want to have the samples packed in the following order:
# a1 a2 a3 a4 b1 b2 b3 b4 c1 ... (where the original data was a b c and OS=4)
W, D = np.concatenate([w[:,None] for w in W], axis=1), np.concatenate([d[:,:,None] for d in D], axis=2)
return W.reshape((-1,)+W.shape[2:]), D.reshape((D.shape[0], -1)+D.shape[3:])
def initializeWeight(D, type, N_OUT):
# Here we first whiten the data (PCA or ZCA) and then optionally run k-means
# on this whitened data.
import numpy as np
if D.shape[0] < N_OUT:
print( " Not enough data for '%s' estimation, using elwise"%type )
return np.random.normal(0, 1, (N_OUT,D.shape[1]))
D = D - np.mean(D, axis=0, keepdims=True)
# PCA, ZCA, K-Means
assert type in ['pca', 'zca', 'kmeans', 'rand'], "Unknown initialization type '%s'"%type
C = D.T.dot(D)
s, V = np.linalg.eigh(C)
# order the eigenvalues
ids = np.argsort(s)[-N_OUT:]
s = s[ids]
V = V[:,ids]
s[s<1e-6] = 0
s[s>=1e-6] = 1. / np.sqrt(s[s>=1e-6]+1e-3)
S = np.diag(s)
if type == 'pca':
return S.dot(V.T)
elif type == 'zca':
return V.dot(S.dot(V.T))
# Whiten the data
wD = D.dot(V.dot(S))
wD /= np.linalg.norm(wD, axis=1)[:,None]
if type == 'kmeans':
# Run k-means
from sklearn.cluster import MiniBatchKMeans
km = MiniBatchKMeans(n_clusters = wD.shape[1], batch_size=10*wD.shape[1]).fit(wD).cluster_centers_
elif type == 'rand':
km = wD[np.random.choice(wD.shape[0], wD.shape[1], False)]
C = km.dot(S.dot(V.T))
C /= np.std(D.dot(C.T), axis=0, keepdims=True).T
return C
def initializeLayer(net, layer_id, bottom_data, top_name, bias=0, type='elwise', max_data=None):
import numpy as np
l = net.layers[layer_id]
NIT = len(list(bottom_data.values())[0])
if type!='elwise' and l.type in ELWISE_LAYERS:
print( "Only 'elwise' supported for layer '%s'. Falling back."%net._layer_names[layer_id] )
type = 'elwise'
for p in l.blobs: p.data[...] = 0
fast = 'fast_' in type
if fast:
type = type.replace('fast_', '')
# Initialize the weights [k-means, ...]
if type == 'elwise':
d = l.blobs[0].data
d[...] = np.random.normal(0, 1, d.shape)
else: # Use the input data
# Are there any groups?
G = 1
bottom_names = net.bottom_names[net._layer_names[layer_id]]
if len(bottom_names) == 1:
N1 = net.blobs[bottom_names[0]].shape[1]
N2 = l.blobs[0].shape[1]
G = N1 // N2
# Gather the input data
T, D = gatherInputData(net, layer_id, bottom_data, top_name, fast, max_data=max_data)
# Figure out the output dimensionality of d
d = l.blobs[0].data
# Loop over groups
for g in range(G):
dg, Dg = d[g*(d.shape[0]//G):(g+1)*(d.shape[0]//G)], D[:,g*(D.shape[1]//G):(g+1)*(D.shape[1]//G):]
Tg = T[g*(T.shape[0]//G):(g+1)*(T.shape[0]//G)]
# Compute the weights
W = initializeWeight(Dg, type, N_OUT=dg.shape[0])
# Multiply the weights by the random basis
# NOTE: This matrix multiplication is a bit large, if it's too slow,
# reduce the oversampling in gatherInputData
dg[...] = np.dot(W, Tg.reshape((Tg.shape[0],-1))).reshape(dg.shape)
# Scale the mean and initialize the bias
top_data = forward(net, layer_id, NIT, bottom_data, [top_name])[top_name]
flat_data = flattenData(top_data)
mu = flat_data.mean(axis=0)
std = flat_data.std(axis=0)
if l.type == 'Deconvolution':
l.blobs[0].data[...] /= std.reshape((1,-1,)+(1,)*(len(l.blobs[0].data.shape)-2))
else:
l.blobs[0].data[...] /= std.reshape((-1,)+(1,)*(len(l.blobs[0].data.shape)-1))
for b in l.blobs[1:]:
b.data[...] = -mu / std + bias
def magicInitialize(net, bias=0, NIT=10, type='elwise', max_data=None):
import numpy as np
# When was a blob last used
last_used = {}
# Make sure all layers are supported, and compute the last time each blob is used
for i, (n, l) in enumerate(zip(net._layer_names, net.layers)):
if l.type in UNSUPPORTED_LAYERS:
print( "WARNING: Layer type '%s' not supported! Things might go very wrong..."%l.type )
elif l.type not in SUPPORTED_LAYERS+STRIP_LAYER:
print( "Unknown layer type '%s'. double check if it is supported"%l.type )
for b in net.bottom_names[n]:
last_used[b] = i
active_data = {}
# Read all the input data
for i, (n, l) in enumerate(zip(net._layer_names, net.layers)):
# Initialize the layer
if len(l.blobs) > 0:
if np.sum(np.abs(l.blobs[0].data)) <= 1e-10:
print( "Initializing layer '%s'"%n )
assert l.type in PARAMETER_LAYERS, "Unsupported parameter layer"
assert len(net.top_names[n]) == 1, "Exactly one output supported"
# Fill the parameters
initializeLayer(net, i, {b: active_data[b] for b in net.bottom_names[n]}, net.top_names[n][0], bias, type, max_data=max_data)
else:
print( "Skipping layer '%s'"%n )
# TODO: Estimate and rescale the values [TODO: Record and undo this scaling above]
# Run the network forward
new_data = forward(net, i, NIT, {b: active_data[b] for b in net.bottom_names[n]}, net.top_names[n])
active_data.update(new_data)
# Delete all unused data
for k in list(active_data):
if k not in last_used or last_used[k] == i:
del active_data[k]
def load(net, blobs):
for l,n in zip(net.layers, net._layer_names):
if n in blobs:
for b, sb in zip(l.blobs, blobs[n]):
b.data[...] = sb
def save(net):
import numpy as np
r = {}
for l,n in zip(net.layers, net._layer_names):
if len(l.blobs) > 0:
r[n] = [np.copy(b.data) for b in l.blobs]
return r
def estimateHomogenety(net):
# Estimate if a certain layer is homogeneous and if yes return the degree k
# by which the output is scaled (if input is scaled by alpha then the output
# is scaled by alpha^k). Return None if the layer is not homogeneous.
import numpy as np
# When was a blob last used
last_used = {}
# Make sure all layers are supported, and compute the range each blob is used in
for i, (n, l) in enumerate(zip(net._layer_names, net.layers)):
for b in net.bottom_names[n]:
last_used[b] = i
active_data = {}
homogenety = {}
# Read all the input data
for i, (n, l) in enumerate(zip(net._layer_names, net.layers)):
# Run the network forward
new_data1 = forward(net, i, 1, {b: [1*d for d in active_data[b]] for b in net.bottom_names[n]}, net.top_names[n])
new_data2 = forward(net, i, 1, {b: [2*d for d in active_data[b]] for b in net.bottom_names[n]}, net.top_names[n])
active_data.update(new_data1)
if len(new_data1) == 1:
m = list(new_data1.keys())[0]
d1, d2 = flattenData(new_data1[m]), flattenData(new_data2[m])
f = np.mean(np.abs(d1), axis=0) / np.mean(np.abs(d2), axis=0)
if 1e-3*np.mean(f) < np.std(f):
# Not homogeneous
homogenety[n] = None
else:
# Compute the degree of the homogeneous transformation
homogenety[n] = (np.log(np.mean(np.abs(d2))) - np.log(np.mean(np.abs(d1)))) / np.log(2)
else:
homogenety[n] = None
# Delete all unused data
for k in list(active_data):
if k not in last_used or last_used[k] == i:
del active_data[k]
return homogenety
def calibrateGradientRatio(net, NIT=1):
import numpy as np
# When was a blob last used
last_used = {}
# Find the last layer to use
last_layer = 0
for i, (n, l) in enumerate(zip(net._layer_names, net.layers)):
if l.type not in STRIP_LAYER:
last_layer = i
for b in net.bottom_names[n]:
last_used[b] = i
# Figure out which tops are involved
last_tops = net.top_names[net._layer_names[last_layer]]
for t in last_tops:
last_used[t] = len(net.layers)
# Call forward and store the data of all data layers
active_data, input_data, bottom_scale = {}, {}, {}
# Read all the input data
for i, (n, l) in enumerate(zip(net._layer_names, net.layers)):
if i > last_layer: break
# Compute the input scale for parameter layers
if len(l.blobs) > 0:
bottom_scale[n] = np.mean([np.mean(np.abs(active_data[b])) for b in net.bottom_names[n]])
# Run the network forward
new_data = forward(net, i, NIT, {b: active_data[b] for b in net.bottom_names[n]}, net.top_names[n])
if l.type in INPUT_LAYERS:
input_data.update(new_data)
active_data.update(new_data)
# Delete all unused data
for k in list(active_data):
if k not in last_used or last_used[k] == i:
del active_data[k]
output_std = np.mean(np.std(flattenData(active_data[last_tops[0]]), axis=0))
for it in range(10):
# Reset the diffs
for l in net.layers:
for b in l.blobs:
b.diff[...] = 0
# Set the top diffs
for t in last_tops:
net.blobs[t].diff[...] = np.random.normal(0, 1, net.blobs[t].shape)
# Compute all gradients
net._backward(last_layer, 0)
# Compute the gradient ratio
ratio={}
for i, (n, l) in enumerate(zip(net._layer_names, net.layers)):
if len(l.blobs) > 0:
assert l.type in PARAMETER_LAYERS, "Parameter layer '%s' currently not supported"%l.type
b = l.blobs[0]
ratio[n] = np.sqrt(np.mean(b.diff**2) / np.mean(b.data**2))
# If all layers are homogeneous, then the target ratio is the geometric mean of all ratios
# (assuming we want the same output)
# To deal with non-homogeneous layers we scale by output_std in the hope to undo correct the
# estimation over time.
# NOTE: for non feed-forward networks the geometric mean might not be the right scaling factor
target_ratio = np.exp(np.mean(np.log(np.array(list(ratio.values()))))) * (output_std)**(1. / len(ratio))
# Terminate if the relative change is less than 1% for all values
log_ratio = np.log( np.array(list(ratio.values())) )
if np.all( np.abs(log_ratio/np.log(target_ratio) - 1) < 0.01 ):
break
# Update all the weights and biases
active_data = {}
# Read all the input data
for i, (n, l) in enumerate(zip(net._layer_names, net.layers)):
if i > last_layer: break
# Use the stored input
if l.type in INPUT_LAYERS:
active_data.update({b: input_data[b] for b in net.top_names[n]})
else:
if len(l.blobs) > 0:
# Add the scaling from the bottom to the biases
current_scale = np.mean([np.mean(np.abs(active_data[b])) for b in net.bottom_names[n]])
adj = current_scale / bottom_scale[n]
for b in list(l.blobs)[1:]:
b.data[...] *= adj
bottom_scale[n] = current_scale
# Scale to obtain the target ratio
scale = np.sqrt(ratio[n] / target_ratio)
for b in l.blobs:
b.data[...] *= scale
active_data.update(forward(net, i, NIT, {b: active_data[b] for b in net.bottom_names[n]}, net.top_names[n]))
# Delete all unused data
for k in list(active_data):
if k not in last_used or last_used[k] == i:
del active_data[k]
new_output_std = np.mean(np.std(flattenData(active_data[last_tops[0]]), axis=0))
if np.abs(np.log(output_std) - np.log(new_output_std)) > 0.25:
# If we diverge by a factor of exp(0.25) = ~1.3, then we should check if the network is really
# homogeneous
print( "WARNING: It looks like one or more layers are not homogeneous! Trying to correct for this..." )
print( " Output std = %f" % new_output_std )
output_std = new_output_std
def netFromString(s, t=None):
import caffe
from tempfile import NamedTemporaryFile
if t is None: t = caffe.TEST
f = NamedTemporaryFile('w')
f.write(s)
f.flush()
r = caffe.Net(f.name, t)
f.close()
return r
def getFileList(f):
from glob import glob
from os import path
return [f for f in glob(f) if path.isfile(f)]
def main():
from argparse import ArgumentParser
from os import path
import numpy as np
parser = ArgumentParser()
parser.add_argument('prototxt')
parser.add_argument('output_caffemodel')
parser.add_argument('-l', '--load', help='Load a pretrained model and rescale it [bias and type are not supported]')
parser.add_argument('-d', '--data', default=None, help='Image list to use [default prototxt data]')
parser.add_argument('-b', '--bias', type=float, default=0.1, help='Bias')
parser.add_argument('-t', '--type', default='elwise', help='Type: elwise, pca, zca, kmeans, rand (random input patches). Add fast_ to speed up the initialization, but you might lose in precision.')
parser.add_argument('-z', action='store_true', help='Zero all weights and reinitialize')
parser.add_argument('-cs', action='store_true', help='Correct for scaling')
parser.add_argument('-q', action='store_true', help='Quiet execution')
parser.add_argument('-s', type=float, default=1.0, help='Scale the input [only custom data "-d"]')
parser.add_argument('-bs', type=int, default=16, help='Batch size [only custom data "-d"]')
parser.add_argument('-nit', type=int, default=10, help='Number of iterations')
parser.add_argument('--mem-limit', type=int, default=500, help='How much memory should we use for the data buffer (MB)?')
parser.add_argument('--gpu', type=int, default=0, help='What gpu to run it on?')
args = parser.parse_args()
if args.q:
from os import environ
environ['GLOG_minloglevel'] = '2'
import caffe, load
from caffe import NetSpec, layers as L
caffe.set_mode_gpu()
if args.gpu is not None:
caffe.set_device(args.gpu)
if args.data is not None:
model = load.ProtoDesc(args.prototxt)
net = NetSpec()
fl = getFileList(args.data)
if len(fl) == 0:
print("Unknown data type for '%s'"%args.data)
exit(1)
from tempfile import NamedTemporaryFile
f = NamedTemporaryFile('w')
f.write('\n'.join([path.abspath(i)+' 0' for i in fl]))
f.flush()
net.data, net.label = L.ImageData(source=f.name, batch_size=args.bs, new_width=model.input_dim[-1], new_height=model.input_dim[-1], transform_param=dict(mean_value=[104,117,123], scale=args.s),ntop=2)
net.out = model(data=net.data, label=net.label)
n = netFromString('force_backward:true\n'+str(net.to_proto()), caffe.TRAIN )
else:
n = caffe.Net(args.prototxt, caffe.TRAIN)
if args.load is not None:
n.copy_from(args.load)
# Rescale existing layers?
#if args.fix:
#magicFix(n, args.nit)
if args.z:
# Zero out all layers
for l in n.layers:
for b in l.blobs:
b.data[...] = 0
if any([np.abs(l.blobs[0].data).sum() < 1e-10 for l in n.layers if len(l.blobs) > 0]):
print( [m for l,m in zip(n.layers, n._layer_names) if len(l.blobs) > 0 and np.abs(l.blobs[0].data).sum() < 1e-10] )
magicInitialize(n, args.bias, NIT=args.nit, type=args.type, max_data=args.mem_limit*1024*1024/4)
else:
print( "Network already initialized, skipping magic init" )
if args.cs:
# A simply helper function that lets you figure out which layers are not
# homogeneous
#print( estimateHomogenety(n) )
calibrateGradientRatio(n)
n.save(args.output_caffemodel)
if __name__ == "__main__":
main()