-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_GVSNETPlus.py
330 lines (284 loc) · 13.4 KB
/
train_GVSNETPlus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
# pytorch-lightning
from collections import defaultdict
from einops import rearrange
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TestTubeLogger
from torch.utils.data import DataLoader
# datasets
from datasets import dataset_dict
from datasets.carla_utils.utils import SaveSemantics
from datasets.ray_utils import getRandomRays
# losses
from losses import loss_dict
# metrics
from metrics import *
from models.alpha_MLP import Alpha_MLP
from models.backboned_unet.unet import Unet
# models
from models.mpi import ApplyAssociation, ComputeHomography, ApplyHomography
from models.nerf import *
from models.rendering import *
from models.sun_model import SUNModel
from opt import get_opts
# optimizer, scheduler, visualization
from utils import *
# sets seeds for numpy, torch, python.random and PYTHONHASHSEED.
seed_everything(100)
_DEBUG = False
class NeRFSystem(LightningModule):
def __init__(self, hparams):
super(NeRFSystem, self).__init__()
self.hparams = hparams
self.loss = loss_dict['color'](coef=self.hparams.rgb_loss_coef)
self.embedding_xyz = Embedding(3, 10)
self.embedding_dir = Embedding(3, 4)
self.embeddings = {'xyz': self.embedding_xyz,
'dir': self.embedding_dir}
self.apply_association = ApplyAssociation(self.hparams.num_layers)
self.compute_homography = ComputeHomography(self.hparams)
self.apply_homography = ApplyHomography()
self.feature_models = {}
# NERF model
self.nerf_model = NeRF(
in_channels_style=self.hparams.appearance_feature + self.hparams.embedding_size)
# Alpha MLP
self.alpha = Alpha_MLP(in_channels=self.hparams.num_planes,
out_channels=self.hparams.num_planes * (
self.hparams.num_planes + self.hparams.N_importance))
self.mlp_model = {'nerf': self.nerf_model, 'alpha': self.alpha}
# SUN model
self.SUN = SUNModel(self.hparams)
if self.hparams.SUN_path != '':
self.SUN.load_state_dict(torch.load(self.hparams.SUN_path))
self.SUN.eval()
# Original weight use SyncBatchNorm, replace them with Batchnorm
self.SUN = convert_model(self.SUN)
else:
self.feature_models['sun'] = self.SUN
# Encoder
self.encoder = Unet(self.hparams, backbone_name='vgg19',
pretrained=True,
encoder_freeze=True,
out_channels=self.hparams.num_layers * self.hparams.appearance_feature,
parametric_upsampling=True,
useSkip=hparams.use_Skip,
useStyleLoss=hparams.use_style_loss)
self.feature_models['encoder'] = self.encoder
print('Init models !!!')
def get_progress_bar_dict(self):
items = super().get_progress_bar_dict()
items.pop("v_num", None)
return items
def forward(self, data, training=False):
# Get the semantic ,disparity, alpha and appearance feature of the novel view
if self.hparams.SUN_path != '':
with torch.no_grad():
_, seg_mul_layer, grid, associations, semantics_nv, mpi_semantics_nv, disp_nv, mpi_alpha_nv \
= self.SUN(data)
else:
sun_loss, seg_mul_layer, grid, associations, semantics_nv, mpi_semantics_nv, disp_nv, mpi_alpha_nv \
= self.SUN(data)
seg_mul_layer = seg_mul_layer.flatten(1, 2)
# Encoder
B, S, H, W = data['input_seg'].shape
output_encoder = self.encoder(data['style_img'], seg_mul_layer)
layered_appearance = output_encoder['out'].view(
B, self.hparams.num_layers, self.hparams.appearance_feature, H, W)
mpi_appearance = self.apply_association(
layered_appearance, input_associations=associations)
# Here we do novel-view synthesis of apearance features
t_vec, r_mat = data['t_vec'], data['r_mat']
# Compute planar homography
h_mats = self.compute_homography(
kmats=data['k_matrix'], r_mats=r_mat, t_vecs=t_vec)
mpi_appearance_nv, _ = self.apply_homography(
h_matrix=h_mats, src_img=mpi_appearance, grid=grid)
SB, D, F, H, W = mpi_appearance_nv.shape
mpi_appearance_nv = rearrange(
mpi_appearance_nv, 'b d f h w -> b (h w) d f')
mpi_semantics_nv = rearrange(
mpi_semantics_nv, 'b d f h w -> b (h w) d f')
mpi_alpha_nv = rearrange(
mpi_alpha_nv.squeeze(2), 'b d h w -> b (h w) d')
if training:
all_rgb_gt, all_rays, all_alphas, all_appearance, all_semantic \
= getRandomRays(self.hparams, data, mpi_alpha_nv, mpi_appearance_nv, mpi_semantics_nv, F)
chunk = self.hparams.chunk
else:
assert SB == 1, 'Wrong eval batch size !'
all_rgb_gt = data['target_rgb_gt']
all_rays = data['target_rays']
all_appearance = mpi_appearance_nv
all_alphas = mpi_alpha_nv
all_semantic = mpi_semantics_nv
chunk = self.hparams.chunk // 16
final_results = {}
# Concat feature and semantic maps
all_appearance = torch.cat([all_appearance, all_semantic], dim=-1)
for b in range(SB):
results = defaultdict(list)
R = all_rays[b].shape[0]
# Conditional NERF MLP network
for i in range(0, R, chunk):
rendered_ray_chunks = \
render_rays(self.mlp_model,
self.embeddings,
all_rays[b][i:i + chunk],
all_alphas[b][i:i + chunk],
all_appearance[b][i:i + chunk],
self.hparams.near_plane,
self.hparams.far_plane,
self.hparams.num_planes,
self.hparams.N_importance,
self.hparams.perturb,
self.hparams.noise_std,
self.hparams.chunk, # chunk size is effective in val mode
)
for k, v in rendered_ray_chunks.items():
results[k] += [v]
for k, v in results.items():
results[k] = torch.cat(v, 0)
if b == 0:
for k, v in results.items():
final_results[k] = results[k]
else:
for k, v in results.items():
final_results[k] = torch.cat(
[final_results[k], results[k]], dim=0)
for k, v in final_results.items():
if training:
assert final_results[k].shape[0] == SB * \
self.hparams.num_rays, 'Error reshaping !'
final_results[k] = final_results[k].view(
SB, self.hparams.num_rays, -1)
else:
final_results[k] = final_results[k].unsqueeze(0)
loss = {}
loss['rgb_loss'] = self.loss(final_results, all_rgb_gt)
if self.hparams.use_style_loss:
loss['style_loss'] = 10 * output_encoder['style_loss']
if self.hparams.SUN_path == '':
loss['semantic_loss'] = sun_loss['semantics_loss']
loss['disp_loss'] = sun_loss['disp_loss']
final_results['semantic_nv'] = semantics_nv
final_results['disp_nv'] = disp_nv
final_results['loss_dict'] = loss
psnr_ = psnr(final_results[f'rgb'], all_rgb_gt)
final_results['psnr'] = psnr_
return final_results
def setup(self, stage):
dataset = dataset_dict[self.hparams.dataset_name]
kwargs = {'root_dir': self.hparams.root_dir,
'img_wh': tuple(self.hparams.img_wh)}
self.train_dataset = dataset(self.hparams, split='train')
self.val_dataset = dataset(self.hparams, split='val')
def configure_optimizers(self):
self.optimizer = get_optimizer2(
self.hparams, self.feature_models, self.mlp_model)
scheduler = get_scheduler(self.hparams, self.optimizer)
return [self.optimizer], [scheduler]
def train_dataloader(self):
return DataLoader(self.train_dataset,
shuffle=True,
num_workers=0 if _DEBUG else 8,
batch_size=self.hparams.batch_size,
pin_memory=True)
def training_step(self, batch, batch_nb):
self.log('train/lr', get_learning_rate(self.optimizer))
results = self(batch, training=True)
loss = sum(
[v for k, v in results['loss_dict'].items()])
self.log('train/rgb_loss', results['loss_dict']['rgb_loss'])
if self.hparams.use_style_loss:
self.log('train/style_loss', results['loss_dict']['style_loss'])
if self.hparams.SUN_path == '':
self.log('train/semantic_loss',
results['loss_dict']['semantic_loss'])
self.log('train/disp_loss', results['loss_dict']['disp_loss'])
self.log('train/loss', loss)
self.log('train/psnr', results['psnr'], prog_bar=True)
return loss
def val_dataloader(self):
return DataLoader(self.val_dataset,
shuffle=False,
num_workers=0 if _DEBUG else 8,
# validate one image (H*W rays) at a time
batch_size=1,
pin_memory=True)
def validation_step(self, batch, batch_nb):
results = self(batch, training=False)
loss = sum([v for k, v in results['loss_dict'].items()])
log = {'val_loss': loss}
save_semantic = SaveSemantics('carla')
if batch_nb == 0:
W, H = self.hparams.img_wh
input_img = batch['style_img'][0].cpu()
input_img = input_img * 0.5 + 0.5
input_seg = torch.argmax(batch['input_seg'][0], dim=0).cpu()
input_seg = torch.from_numpy(
save_semantic.to_color(input_seg)).permute(2, 0, 1)
input_seg = input_seg / 255.0
# from torchvision.utils import save_image
# save_image(input_seg, 'img1.png')
target_img = batch['target_img'][0].cpu()
target_img = target_img * 0.5 + 0.5
target_seg = torch.argmax(batch['target_seg'][0], dim=0).cpu()
target_seg = torch.from_numpy(
save_semantic.to_color(target_seg)).permute(2, 0, 1)
target_seg = target_seg / 255.0
stack = torch.stack([input_img, input_seg, target_img, target_seg])
pred_seg = torch.argmax(
results['semantic_nv'].squeeze(), dim=0).cpu()
pred_seg = torch.from_numpy(
save_semantic.to_color(pred_seg)).permute(2, 0, 1)
pred_seg = pred_seg / 255.0
pred_disp = save_depth(results['disp_nv'].squeeze().cpu())
baseline = self.hparams.stereo_baseline
fx = 128.0
pred_depth_cvt = baseline * fx / results['depth']
pred_depth = save_depth(pred_depth_cvt.squeeze().view(H, W).cpu())
pred_rgb = results['rgb'].squeeze().permute(
1, 0).view(3, H, W).cpu()
stack_pred = torch.stack(
[pred_rgb, pred_seg, pred_disp, pred_depth])
self.logger.experiment.add_images('val/rgb_sem_INPUT-rgb_sem_TARGET',
stack, self.global_step)
self.logger.experiment.add_images('val/predictions',
stack_pred, self.global_step)
return log
def validation_epoch_end(self, outputs):
mean_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
self.log('val/loss', mean_loss, prog_bar=True)
def main(hparams):
system = NeRFSystem(hparams)
checkpoint_callback = \
ModelCheckpoint(dirpath=os.path.join(hparams.log_dir, f'ckpts/{hparams.exp_name}'),
filename='{epoch}-{val_loss:.2f}',
monitor='val/loss',
mode='max',
save_top_k=5)
logger = TestTubeLogger(save_dir=hparams.log_dir,
name=hparams.exp_name,
debug=False,
create_git_tag=True,
log_graph=False)
trainer = Trainer(max_epochs=hparams.num_epochs,
callbacks=[checkpoint_callback],
resume_from_checkpoint=hparams.ckpt_path,
logger=logger,
weights_summary=None,
progress_bar_refresh_rate=1000 if hparams.num_gpus > 1 else 1,
num_nodes=1,
gpus=hparams.num_gpus,
accelerator='ddp' if hparams.num_gpus > 1 else None,
sync_batchnorm=True if hparams.num_gpus > 1 else False,
num_sanity_val_steps=1,
benchmark=True,
profiler="simple" if hparams.num_gpus == 1 else None,
deterministic=False)
trainer.fit(system)
if __name__ == '__main__':
hparams = get_opts()
main(hparams)