-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexp_semtab.py
160 lines (135 loc) · 6.29 KB
/
exp_semtab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os.path
from experiments.mtab4d import m_test_semtab, m_test_evaluation
import m_setting as st
import api.utilities.m_iw as iw
def semtab2019():
for dataset in [st.DATA_VERSION_FIXED, st.DATA_VERSION_ORG]:
for round_id in [1, 4, 3, 2, 5]:
for search_mode in ["b", "f", "a"]:
print(f"Round {round_id} - SearchMode: {search_mode} - Data: {dataset}")
m_test_semtab(
round_id=round_id,
n_thread=10,
data_version=dataset,
search_mode=search_mode,
)
def print_results():
run_eval = True
results = {}
if os.path.exists(st.dir_eval_res):
try:
results = iw.load_obj_pkl(st.dir_eval_res)
run_eval = False
except Exception as message:
iw.print_status(message)
if run_eval:
for dataset in [st.DATA_VERSION_ORG, st.DATA_VERSION_FIXED]:
for round_id in [1, 4, 3, 2, 5]:
for search_mode in ["b", "f", "a"]:
print(
f"Round {round_id} - SearchMode: {search_mode} - Data: {dataset}"
)
eval_res = m_test_evaluation(
c_round=round_id, data_version=dataset, search_mode=search_mode
)
results[(dataset, round_id, search_mode)] = eval_res
iw.save_obj_pkl(st.dir_eval_res, results)
# Print SemTab 2019 Org
dataset = st.DATA_VERSION_ORG
rounds = [1, 2, 3, 4, 5]
tasks = ["cea", "cta", "cpa"]
task_str = {task: [] for task in tasks}
for search_mode in ["b", "f", "a"]:
res_round = {}
for round_id in rounds:
eval_res = results[(dataset, round_id, search_mode)]
cea_f1 = "-"
cea_p = "-"
cta_ah = "-"
cta_ap = "-"
cpa_f1 = "-"
cpa_p = "-"
if eval_res.get("res_cea"):
cea_f1 = eval_res.get("res_cea").get("f1")
cea_p = eval_res.get("res_cea").get("precision")
if eval_res.get("res_cpa"):
cpa_f1 = eval_res.get("res_cpa").get("f1")
cpa_p = eval_res.get("res_cpa").get("precision")
if eval_res.get("res_cta"):
cta_ah = eval_res.get("res_cta").get("ah")
cta_ap = eval_res.get("res_cta").get("ap")
res_round[round_id] = [cea_f1, cea_p, cta_ah, cta_ap, cpa_f1, cpa_p]
for i, to_str_value in enumerate(res_round[round_id]):
if isinstance(to_str_value, float):
res_round[round_id][i] = f"{to_str_value:.3f}"
cea_f1_str = "\t".join(str(res_round[round_id][0]) for round_id in rounds)
cea_p_str = "\t".join(str(res_round[round_id][1]) for round_id in rounds)
task_str["cea"].append(f"MTab4D{search_mode}\t{cea_f1_str}\t{cea_p_str}")
cta_ah_str = "\t".join(str(res_round[round_id][2]) for round_id in rounds)
cta_ap_str = "\t".join(str(res_round[round_id][3]) for round_id in rounds)
task_str["cta"].append(f"MTab4D{search_mode}\t{cta_ah_str}\t{cta_ap_str}")
cpa_f1_str = "\t".join(str(res_round[round_id][4]) for round_id in rounds)
cpa_p_str = "\t".join(str(res_round[round_id][5]) for round_id in rounds)
task_str["cpa"].append(f"MTab4D{search_mode}\t{cpa_f1_str}\t{cpa_p_str}")
for task, task_lines in task_str.items():
iw.print_status(f"Tasks: {task}")
for task_line in task_lines:
iw.print_status(task_line)
# Print on adapted dataset
task_str = {task: [] for task in tasks}
datasets = [st.DATA_VERSION_ORG, st.DATA_VERSION_FIXED]
for search_mode in ["b", "f", "a"]:
res_round = {}
for round_id in rounds:
res_dataset = {}
for dataset in datasets:
eval_res = results[(dataset, round_id, search_mode)]
cea_f1 = "-"
cta_ah = "-"
cpa_f1 = "-"
if eval_res.get("res_cea"):
cea_f1 = eval_res.get("res_cea").get("f1")
if eval_res.get("res_cpa"):
cpa_f1 = eval_res.get("res_cpa").get("f1")
if eval_res.get("res_cta"):
cta_ah = eval_res.get("res_cta").get("ah")
res_round[dataset] = [cea_f1, cta_ah, cpa_f1]
for i, to_str_value in enumerate(res_round[dataset]):
if isinstance(to_str_value, float):
res_round[dataset][i] = f"{to_str_value:.3f}"
res_dataset = []
for i in range(3):
combine_str = f"{res_round[st.DATA_VERSION_ORG][i]}\t{res_round[st.DATA_VERSION_FIXED][i]}"
if (
len(res_round[st.DATA_VERSION_ORG][i]) == 5
and len(res_round[st.DATA_VERSION_FIXED][i]) == 5
):
ratio = (
float(res_round[st.DATA_VERSION_FIXED][i])
/ float(res_round[st.DATA_VERSION_ORG][i])
- 1
) * 100
if ratio > 0:
combine_str += f" (+{ratio:.2f}%)"
else:
combine_str += f" ({ratio:.2f}%)"
res_dataset.append(combine_str)
res_round[round_id] = res_dataset
cea_f1_str = "\t".join(str(res_round[round_id][0]) for round_id in rounds)
task_str["cea"].append(f"MTab4D{search_mode}\t{cea_f1_str}")
cta_ah_str = "\t".join(str(res_round[round_id][1]) for round_id in rounds)
task_str["cta"].append(f"MTab4D{search_mode}\t{cta_ah_str}")
cpa_f1_str = "\t".join(str(res_round[round_id][2]) for round_id in rounds)
task_str["cpa"].append(f"MTab4D{search_mode}\t{cpa_f1_str}")
for task, task_lines in task_str.items():
iw.print_status(f"Tasks: {task}")
for task_line in task_lines:
iw.print_status(task_line)
def semtab2021(round_id=5, search_mode="f", dataset="semtab2021"):
print(f"Round {round_id} - SearchMode: {search_mode} - Data: {dataset}")
m_test_semtab(
round_id=round_id, n_thread=4, data_version=dataset, search_mode=search_mode,
)
if __name__ == "__main__":
semtab2019()
print_results()