-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathptm_voronoi_cell.cpp
1476 lines (1355 loc) · 64.5 KB
/
ptm_voronoi_cell.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Voro++ Copyright (c) 2008, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from the U.S. Dept. of Energy). All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
(1) Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
(2) Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
(3) Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National
Laboratory, without imposing a separate written license agreement for such
Enhancements, then you hereby grant the following license: a non-exclusive,
royalty-free perpetual license to install, use, modify, prepare derivative
works, incorporate into other computer software, distribute, and sublicense
such enhancements or derivative works thereof, in binary and source code form.
*/
// Voro++, a 3D cell-based Voronoi library
//
// Author : Chris H. Rycroft (LBL / UC Berkeley)
// Email : [email protected]
// Date : August 30th 2011
//
// Modified by PM Larsen for use in Polyhedral Template Matching
/** \file cell.cc
* \brief Function implementations for the voronoicell and related classes. */
#include <cmath>
#include <cstring>
#include <cstdlib>
#include "ptm_voronoi_config.h"
#include "ptm_voronoi_cell.h"
namespace ptm_voro {
inline void voro_fatal_error(const char *p,int status) {
fprintf(stderr,"voro++: %s\n",p);
exit(status);
//return -1;//status;
}
/** Constructs a Voronoi cell and sets up the initial memory. */
voronoicell_base::voronoicell_base() :
current_vertices(init_vertices), current_vertex_order(init_vertex_order),
current_delete_size(init_delete_size), current_delete2_size(init_delete2_size),
ed(new int*[current_vertices]), nu(new int[current_vertices]),
pts(new double[3*current_vertices]), mem(new int[current_vertex_order]),
mec(new int[current_vertex_order]), mep(new int*[current_vertex_order]),
ds(new int[current_delete_size]), stacke(ds+current_delete_size),
ds2(new int[current_delete2_size]), stacke2(ds2+current_delete_size),
current_marginal(init_marginal), marg(new int[current_marginal]) {
int i;
for(i=0;i<3;i++) {
mem[i]=init_n_vertices;mec[i]=0;
mep[i]=new int[init_n_vertices*((i<<1)+1)];
}
mem[3]=init_3_vertices;mec[3]=0;
mep[3]=new int[init_3_vertices*7];
for(i=4;i<current_vertex_order;i++) {
mem[i]=init_n_vertices;mec[i]=0;
mep[i]=new int[init_n_vertices*((i<<1)+1)];
}
}
/** The voronoicell destructor deallocates all the dynamic memory. */
voronoicell_base::~voronoicell_base() {
for(int i=current_vertex_order-1;i>=0;i--) if(mem[i]>0) delete [] mep[i];
delete [] marg;
delete [] ds2;delete [] ds;
delete [] mep;delete [] mec;
delete [] mem;delete [] pts;
delete [] nu;delete [] ed;
}
/** Ensures that enough memory is allocated prior to carrying out a copy.
* \param[in] vc a reference to the specialized version of the calling class.
* \param[in] vb a pointered to the class to be copied. */
template<class vc_class>
void voronoicell_base::check_memory_for_copy(vc_class &vc,voronoicell_base* vb) {
while(current_vertex_order<vb->current_vertex_order) add_memory_vorder(vc);
for(int i=0;i<current_vertex_order;i++) while(mem[i]<vb->mec[i]) add_memory(vc,i,ds2);
while(current_vertices<vb->p) add_memory_vertices(vc);
}
/** Increases the memory storage for a particular vertex order, by increasing
* the size of the of the corresponding mep array. If the arrays already exist,
* their size is doubled; if they don't exist, then new ones of size
* init_n_vertices are allocated. The routine also ensures that the pointers in
* the ed array are updated, by making use of the back pointers. For the cases
* where the back pointer has been temporarily overwritten in the marginal
* vertex code, the auxiliary delete stack is scanned to find out how to update
* the ed value. If the template has been instantiated with the neighbor
* tracking turned on, then the routine also reallocates the corresponding mne
* array.
* \param[in] i the order of the vertex memory to be increased. */
template<class vc_class>
void voronoicell_base::add_memory(vc_class &vc,int i,int *stackp2) {
int s=(i<<1)+1;
if(mem[i]==0) {
vc.n_allocate(i,init_n_vertices);
mep[i]=new int[init_n_vertices*s];
mem[i]=init_n_vertices;
#if VOROPP_VERBOSE >=2
fprintf(stderr,"Order %d vertex memory created\n",i);
#endif
} else {
int j=0,k,*l;
mem[i]<<=1;
if(mem[i]>max_n_vertices) voro_fatal_error("Point memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
#if VOROPP_VERBOSE >=2
fprintf(stderr,"Order %d vertex memory scaled up to %d\n",i,mem[i]);
#endif
l=new int[s*mem[i]];
int m=0;
vc.n_allocate_aux1(i);
while(j<s*mec[i]) {
k=mep[i][j+(i<<1)];
if(k>=0) {
ed[k]=l+j;
vc.n_set_to_aux1_offset(k,m);
} else {
int *dsp;
for(dsp=ds2;dsp<stackp2;dsp++) {
if(ed[*dsp]==mep[i]+j) {
ed[*dsp]=l+j;
vc.n_set_to_aux1_offset(*dsp,m);
break;
}
}
if(dsp==stackp2) voro_fatal_error("Couldn't relocate dangling pointer",VOROPP_INTERNAL_ERROR);
#if VOROPP_VERBOSE >=3
fputs("Relocated dangling pointer",stderr);
#endif
}
for(k=0;k<s;k++,j++) l[j]=mep[i][j];
for(k=0;k<i;k++,m++) vc.n_copy_to_aux1(i,m);
}
delete [] mep[i];
mep[i]=l;
vc.n_switch_to_aux1(i);
}
}
/** Doubles the maximum number of vertices allowed, by reallocating the ed, nu,
* and pts arrays. If the allocation exceeds the absolute maximum set in
* max_vertices, then the routine exits with a fatal error. If the template has
* been instantiated with the neighbor tracking turned on, then the routine
* also reallocates the ne array. */
template<class vc_class>
void voronoicell_base::add_memory_vertices(vc_class &vc) {
printf("nope: %d\n", current_vertices);
exit(3);
int i=(current_vertices<<1),j,**pp,*pnu;
if(i>max_vertices) voro_fatal_error("Vertex memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
#if VOROPP_VERBOSE >=2
fprintf(stderr,"Vertex memory scaled up to %d\n",i);
#endif
double *ppts;
pp=new int*[i];
for(j=0;j<current_vertices;j++) pp[j]=ed[j];
delete [] ed;ed=pp;
vc.n_add_memory_vertices(i);
pnu=new int[i];
for(j=0;j<current_vertices;j++) pnu[j]=nu[j];
delete [] nu;nu=pnu;
ppts=new double[3*i];
for(j=0;j<3*current_vertices;j++) ppts[j]=pts[j];
delete [] pts;pts=ppts;
current_vertices=i;
}
/** Doubles the maximum allowed vertex order, by reallocating mem, mep, and mec
* arrays. If the allocation exceeds the absolute maximum set in
* max_vertex_order, then the routine causes a fatal error. If the template has
* been instantiated with the neighbor tracking turned on, then the routine
* also reallocates the mne array. */
template<class vc_class>
void voronoicell_base::add_memory_vorder(vc_class &vc) {
int i=(current_vertex_order<<1),j,*p1,**p2;
if(i>max_vertex_order) voro_fatal_error("Vertex order memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
#if VOROPP_VERBOSE >=2
fprintf(stderr,"Vertex order memory scaled up to %d\n",i);
#endif
p1=new int[i];
for(j=0;j<current_vertex_order;j++) p1[j]=mem[j];while(j<i) p1[j++]=0;
delete [] mem;mem=p1;
p2=new int*[i];
for(j=0;j<current_vertex_order;j++) p2[j]=mep[j];
delete [] mep;mep=p2;
p1=new int[i];
for(j=0;j<current_vertex_order;j++) p1[j]=mec[j];while(j<i) p1[j++]=0;
delete [] mec;mec=p1;
vc.n_add_memory_vorder(i);
current_vertex_order=i;
}
/** Doubles the size allocation of the main delete stack. If the allocation
* exceeds the absolute maximum set in max_delete_size, then routine causes a
* fatal error. */
void voronoicell_base::add_memory_ds(int *&stackp) {
current_delete_size<<=1;
if(current_delete_size>max_delete_size) voro_fatal_error("Delete stack 1 memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
#if VOROPP_VERBOSE >=2
fprintf(stderr,"Delete stack 1 memory scaled up to %d\n",current_delete_size);
#endif
int *dsn=new int[current_delete_size],*dsnp=dsn,*dsp=ds;
while(dsp<stackp) *(dsnp++)=*(dsp++);
delete [] ds;ds=dsn;stackp=dsnp;
stacke=ds+current_delete_size;
}
/** Doubles the size allocation of the auxiliary delete stack. If the
* allocation exceeds the absolute maximum set in max_delete2_size, then the
* routine causes a fatal error. */
void voronoicell_base::add_memory_ds2(int *&stackp2) {
current_delete2_size<<=1;
if(current_delete2_size>max_delete2_size) voro_fatal_error("Delete stack 2 memory allocation exceeded absolute maximum",VOROPP_MEMORY_ERROR);
#if VOROPP_VERBOSE >=2
fprintf(stderr,"Delete stack 2 memory scaled up to %d\n",current_delete2_size);
#endif
int *dsn=new int[current_delete2_size],*dsnp=dsn,*dsp=ds2;
while(dsp<stackp2) *(dsnp++)=*(dsp++);
delete [] ds2;ds2=dsn;stackp2=dsnp;
stacke2=ds2+current_delete2_size;
}
/** Initializes a Voronoi cell as a rectangular box with the given dimensions.
* \param[in] (xmin,xmax) the minimum and maximum x coordinates.
* \param[in] (ymin,ymax) the minimum and maximum y coordinates.
* \param[in] (zmin,zmax) the minimum and maximum z coordinates. */
void voronoicell_base::init_base(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax) {
for(int i=0;i<current_vertex_order;i++) mec[i]=0;up=0;
mec[3]=p=8;xmin*=2;xmax*=2;ymin*=2;ymax*=2;zmin*=2;zmax*=2;
*pts=xmin;pts[1]=ymin;pts[2]=zmin;
pts[3]=xmax;pts[4]=ymin;pts[5]=zmin;
pts[6]=xmin;pts[7]=ymax;pts[8]=zmin;
pts[9]=xmax;pts[10]=ymax;pts[11]=zmin;
pts[12]=xmin;pts[13]=ymin;pts[14]=zmax;
pts[15]=xmax;pts[16]=ymin;pts[17]=zmax;
pts[18]=xmin;pts[19]=ymax;pts[20]=zmax;
pts[21]=xmax;pts[22]=ymax;pts[23]=zmax;
int *q=mep[3];
*q=1;q[1]=4;q[2]=2;q[3]=2;q[4]=1;q[5]=0;q[6]=0;
q[7]=3;q[8]=5;q[9]=0;q[10]=2;q[11]=1;q[12]=0;q[13]=1;
q[14]=0;q[15]=6;q[16]=3;q[17]=2;q[18]=1;q[19]=0;q[20]=2;
q[21]=2;q[22]=7;q[23]=1;q[24]=2;q[25]=1;q[26]=0;q[27]=3;
q[28]=6;q[29]=0;q[30]=5;q[31]=2;q[32]=1;q[33]=0;q[34]=4;
q[35]=4;q[36]=1;q[37]=7;q[38]=2;q[39]=1;q[40]=0;q[41]=5;
q[42]=7;q[43]=2;q[44]=4;q[45]=2;q[46]=1;q[47]=0;q[48]=6;
q[49]=5;q[50]=3;q[51]=6;q[52]=2;q[53]=1;q[54]=0;q[55]=7;
*ed=q;ed[1]=q+7;ed[2]=q+14;ed[3]=q+21;
ed[4]=q+28;ed[5]=q+35;ed[6]=q+42;ed[7]=q+49;
*nu=nu[1]=nu[2]=nu[3]=nu[4]=nu[5]=nu[6]=nu[7]=3;
}
/** Starting from a point within the current cutting plane, this routine attempts
* to find an edge to a point outside the cutting plane. This prevents the plane
* routine from .
* \param[in] vc a reference to the specialized version of the calling class.
* \param[in,out] up */
template<class vc_class>
inline bool voronoicell_base::search_for_outside_edge(vc_class &vc,int &up) {
int i,lp,lw,*j(ds2),*stackp2(ds2);
double l;
*(stackp2++)=up;
while(j<stackp2) {
up=*(j++);
for(i=0;i<nu[up];i++) {
lp=ed[up][i];
lw=m_test(lp,l);
if(lw==-1) return true;
else if(lw==0) add_to_stack(vc,lp,stackp2);
}
}
return false;
}
/** Adds a point to the auxiliary delete stack if it is not already there.
* \param[in] vc a reference to the specialized version of the calling class.
* \param[in] lp the index of the point to add.
* \param[in,out] stackp2 a pointer to the end of the stack entries. */
template<class vc_class>
inline void voronoicell_base::add_to_stack(vc_class &vc,int lp,int *&stackp2) {
(void)vc;
for(int *k(ds2);k<stackp2;k++) if(*k==lp) return;
if(stackp2==stacke2) add_memory_ds2(stackp2);
*(stackp2++)=lp;
}
/** Cuts the Voronoi cell by a particle whose center is at a separation of
* (x,y,z) from the cell center. The value of rsq should be initially set to
* \f$x^2+y^2+z^2\f$.
* \param[in] vc a reference to the specialized version of the calling class.
* \param[in] (x,y,z) the normal vector to the plane.
* \param[in] rsq the distance along this vector of the plane.
* \param[in] p_id the plane ID (for neighbor tracking only).
* \return False if the plane cut deleted the cell entirely, true otherwise. */
template<class vc_class>
bool voronoicell_base::nplane(vc_class &vc,double x,double y,double z,double rsq,int p_id) {
int count=0,i,j,k,lp=up,cp,qp,rp,*stackp(ds),*stackp2(ds2),*dsp;
int us=0,ls=0,qs,iqs,cs,uw,qw,lw;
int *edp,*edd;
double u,l,r,q;bool complicated_setup=false,new_double_edge=false,double_edge=false;
// Initialize the safe testing routine
n_marg=0;px=x;py=y;pz=z;prsq=rsq;
// Test approximately sqrt(n)/4 points for their proximity to the plane
// and keep the one which is closest
uw=m_test(up,u);
// Starting from an initial guess, we now move from vertex to vertex,
// to try and find an edge which intersects the cutting plane,
// or a vertex which is on the plane
try {
if(uw==1) {
// The test point is inside the cutting plane.
us=0;
do {
lp=ed[up][us];
lw=m_test(lp,l);
if(l<u) break;
us++;
} while (us<nu[up]);
if(us==nu[up]) {
return false;
}
ls=ed[up][nu[up]+us];
while(lw==1) {
if(++count>=p) throw true;
u=l;up=lp;
for(us=0;us<ls;us++) {
lp=ed[up][us];
lw=m_test(lp,l);
if(l<u) break;
}
if(us==ls) {
us++;
while(us<nu[up]) {
lp=ed[up][us];
lw=m_test(lp,l);
if(l<u) break;
us++;
}
if(us==nu[up]) {
return false;
}
}
ls=ed[up][nu[up]+us];
}
// If the last point in the iteration is within the
// plane, we need to do the complicated setup
// routine. Otherwise, we use the regular iteration.
if(lw==0) {
up=lp;
complicated_setup=true;
} else complicated_setup=false;
} else if(uw==-1) {
us=0;
do {
qp=ed[up][us];
qw=m_test(qp,q);
if(u<q) break;
us++;
} while (us<nu[up]);
if(us==nu[up]) return true;
while(qw==-1) {
qs=ed[up][nu[up]+us];
if(++count>=p) throw true;
u=q;up=qp;
for(us=0;us<qs;us++) {
qp=ed[up][us];
qw=m_test(qp,q);
if(u<q) break;
}
if(us==qs) {
us++;
while(us<nu[up]) {
qp=ed[up][us];
qw=m_test(qp,q);
if(u<q) break;
us++;
}
if(us==nu[up]) return true;
}
}
if(qw==1) {
lp=up;ls=us;l=u;
up=qp;us=ed[lp][nu[lp]+ls];u=q;
complicated_setup=false;
} else {
up=qp;
complicated_setup=true;
}
} else {
// Our original test point was on the plane, so we
// automatically head for the complicated setup
// routine
complicated_setup=true;
}
}
catch(bool except) {
// This routine is a fall-back, in case floating point errors
// cause the usual search routine to fail. In the fall-back
// routine, we just test every edge to find one straddling
// the plane.
#if VOROPP_VERBOSE >=1
fputs("Bailed out of convex calculation\n",stderr);
#endif
qw=1;lw=0;
for(qp=0;qp<p;qp++) {
qw=m_test(qp,q);
if(qw==1) {
// The point is inside the cutting space. Now
// see if we can find a neighbor which isn't.
for(us=0;us<nu[qp];us++) {
lp=ed[qp][us];
if(lp<qp) {
lw=m_test(lp,l);
if(lw!=1) break;
}
}
if(us<nu[qp]) {
up=qp;
if(lw==0) {
complicated_setup=true;
} else {
complicated_setup=false;
u=q;
ls=ed[up][nu[up]+us];
}
break;
}
} else if(qw==-1) {
// The point is outside the cutting space. See
// if we can find a neighbor which isn't.
for(ls=0;ls<nu[qp];ls++) {
up=ed[qp][ls];
if(up<qp) {
uw=m_test(up,u);
if(uw!=-1) break;
}
}
if(ls<nu[qp]) {
if(uw==0) {
up=qp;
complicated_setup=true;
} else {
complicated_setup=false;
lp=qp;l=q;
us=ed[lp][nu[lp]+ls];
}
break;
}
} else {
// The point is in the plane, so we just
// proceed with the complicated setup routine
up=qp;
complicated_setup=true;
break;
}
}
if(qp==p) return qw==-1?true:false;
}
// We're about to add the first point of the new facet. In either
// routine, we have to add a point, so first check there's space for
// it.
if(p==current_vertices) add_memory_vertices(vc);
if(complicated_setup) {
// We want to be strict about reaching the conclusion that the
// cell is entirely within the cutting plane. It's not enough
// to find a vertex that has edges which are all inside or on
// the plane. If the vertex has neighbors that are also on the
// plane, we should check those too.
if(!search_for_outside_edge(vc,up)) return false;
// The search algorithm found a point which is on the cutting
// plane. We leave that point in place, and create a new one at
// the same location.
pts[3*p]=pts[3*up];
pts[3*p+1]=pts[3*up+1];
pts[3*p+2]=pts[3*up+2];
// Search for a collection of edges of the test vertex which
// are outside of the cutting space. Begin by testing the
// zeroth edge.
i=0;
lp=*ed[up];
lw=m_test(lp,l);
if(lw!=-1) {
// The first edge is either inside the cutting space,
// or lies within the cutting plane. Test the edges
// sequentially until we find one that is outside.
rp=lw;
do {
i++;
// If we reached the last edge with no luck
// then all of the vertices are inside
// or on the plane, so the cell is completely
// deleted
if(i==nu[up]) return false;
lp=ed[up][i];
lw=m_test(lp,l);
} while (lw!=-1);
j=i+1;
// We found an edge outside the cutting space. Keep
// moving through these edges until we find one that's
// inside or on the plane.
while(j<nu[up]) {
lp=ed[up][j];
lw=m_test(lp,l);
if(lw!=-1) break;
j++;
}
// Compute the number of edges for the new vertex. In
// general it will be the number of outside edges
// found, plus two. But we need to recognize the
// special case when all but one edge is outside, and
// the remaining one is on the plane. For that case we
// have to reduce the edge count by one to prevent
// doubling up.
if(j==nu[up]&&i==1&&rp==0) {
nu[p]=nu[up];
double_edge=true;
} else nu[p]=j-i+2;
k=1;
// Add memory for the new vertex if needed, and
// initialize
while (nu[p]>=current_vertex_order) add_memory_vorder(vc);
if(mec[nu[p]]==mem[nu[p]]) add_memory(vc,nu[p],stackp2);
vc.n_set_pointer(p,nu[p]);
ed[p]=mep[nu[p]]+((nu[p]<<1)+1)*mec[nu[p]]++;
ed[p][nu[p]<<1]=p;
// Copy the edges of the original vertex into the new
// one. Delete the edges of the original vertex, and
// update the relational table.
us=cycle_down(i,up);
while(i<j) {
qp=ed[up][i];
qs=ed[up][nu[up]+i];
vc.n_copy(p,k,up,i);
ed[p][k]=qp;
ed[p][nu[p]+k]=qs;
ed[qp][qs]=p;
ed[qp][nu[qp]+qs]=k;
ed[up][i]=-1;
i++;k++;
}
qs=i==nu[up]?0:i;
} else {
// In this case, the zeroth edge is outside the cutting
// plane. Begin by searching backwards from the last
// edge until we find an edge which isn't outside.
i=nu[up]-1;
lp=ed[up][i];
lw=m_test(lp,l);
while(lw==-1) {
i--;
// If i reaches zero, then we have a point in
// the plane all of whose edges are outside
// the cutting space, so we just exit
if(i==0) return true;
lp=ed[up][i];
lw=m_test(lp,l);
}
// Now search forwards from zero
j=1;
qp=ed[up][j];
qw=m_test(qp,q);
while(qw==-1) {
j++;
qp=ed[up][j];
qw=m_test(qp,l);
}
// Compute the number of edges for the new vertex. In
// general it will be the number of outside edges
// found, plus two. But we need to recognize the
// special case when all but one edge is outside, and
// the remaining one is on the plane. For that case we
// have to reduce the edge count by one to prevent
// doubling up.
if(i==j&&qw==0) {
double_edge=true;
nu[p]=nu[up];
} else {
nu[p]=nu[up]-i+j+1;
}
// Add memory to store the vertex if it doesn't exist
// already
k=1;
while(nu[p]>=current_vertex_order) add_memory_vorder(vc);
if(mec[nu[p]]==mem[nu[p]]) add_memory(vc,nu[p],stackp2);
// Copy the edges of the original vertex into the new
// one. Delete the edges of the original vertex, and
// update the relational table.
vc.n_set_pointer(p,nu[p]);
ed[p]=mep[nu[p]]+((nu[p]<<1)+1)*mec[nu[p]]++;
ed[p][nu[p]<<1]=p;
us=i++;
while(i<nu[up]) {
qp=ed[up][i];
qs=ed[up][nu[up]+i];
vc.n_copy(p,k,up,i);
ed[p][k]=qp;
ed[p][nu[p]+k]=qs;
ed[qp][qs]=p;
ed[qp][nu[qp]+qs]=k;
ed[up][i]=-1;
i++;k++;
}
i=0;
while(i<j) {
qp=ed[up][i];
qs=ed[up][nu[up]+i];
vc.n_copy(p,k,up,i);
ed[p][k]=qp;
ed[p][nu[p]+k]=qs;
ed[qp][qs]=p;
ed[qp][nu[qp]+qs]=k;
ed[up][i]=-1;
i++;k++;
}
qs=j;
}
if(!double_edge) {
vc.n_copy(p,k,up,qs);
vc.n_set(p,0,p_id);
} else vc.n_copy(p,0,up,qs);
// Add this point to the auxiliary delete stack
if(stackp2==stacke2) add_memory_ds2(stackp2);
*(stackp2++)=up;
// Look at the edges on either side of the group that was
// detected. We're going to commence facet computation by
// moving along one of them. We are going to end up coming back
// along the other one.
cs=k;
qp=up;q=u;
i=ed[up][us];
us=ed[up][nu[up]+us];
up=i;
ed[qp][nu[qp]<<1]=-p;
} else {
// The search algorithm found an intersected edge between the
// points lp and up. Create a new vertex between them which
// lies on the cutting plane. Since u and l differ by at least
// the tolerance, this division should never screw up.
if(stackp==stacke) add_memory_ds(stackp);
*(stackp++)=up;
r=u/(u-l);l=1-r;
pts[3*p]=pts[3*lp]*r+pts[3*up]*l;
pts[3*p+1]=pts[3*lp+1]*r+pts[3*up+1]*l;
pts[3*p+2]=pts[3*lp+2]*r+pts[3*up+2]*l;
// This point will always have three edges. Connect one of them
// to lp.
nu[p]=3;
if(mec[3]==mem[3]) add_memory(vc,3,stackp2);
vc.n_set_pointer(p,3);
vc.n_set(p,0,p_id);
vc.n_copy(p,1,up,us);
vc.n_copy(p,2,lp,ls);
ed[p]=mep[3]+7*mec[3]++;
ed[p][6]=p;
ed[up][us]=-1;
ed[lp][ls]=p;
ed[lp][nu[lp]+ls]=1;
ed[p][1]=lp;
ed[p][nu[p]+1]=ls;
cs=2;
// Set the direction to move in
qs=cycle_up(us,up);
qp=up;q=u;
}
// When the code reaches here, we have initialized the first point, and
// we have a direction for moving it to construct the rest of the facet
cp=p;rp=p;p++;
while(qp!=up||qs!=us) {
// We're currently tracing round an intersected facet. Keep
// moving around it until we find a point or edge which
// intersects the plane.
lp=ed[qp][qs];
lw=m_test(lp,l);
if(lw==1) {
// The point is still in the cutting space. Just add it
// to the delete stack and keep moving.
qs=cycle_up(ed[qp][nu[qp]+qs],lp);
qp=lp;
q=l;
if(stackp==stacke) add_memory_ds(stackp);
*(stackp++)=qp;
} else if(lw==-1) {
// The point is outside of the cutting space, so we've
// found an intersected edge. Introduce a regular point
// at the point of intersection. Connect it to the
// point we just tested. Also connect it to the previous
// new point in the facet we're constructing.
if(p==current_vertices) add_memory_vertices(vc);
r=q/(q-l);l=1-r;
pts[3*p]=pts[3*lp]*r+pts[3*qp]*l;
pts[3*p+1]=pts[3*lp+1]*r+pts[3*qp+1]*l;
pts[3*p+2]=pts[3*lp+2]*r+pts[3*qp+2]*l;
nu[p]=3;
if(mec[3]==mem[3]) add_memory(vc,3,stackp2);
ls=ed[qp][qs+nu[qp]];
vc.n_set_pointer(p,3);
vc.n_set(p,0,p_id);
vc.n_copy(p,1,qp,qs);
vc.n_copy(p,2,lp,ls);
ed[p]=mep[3]+7*mec[3]++;
*ed[p]=cp;
ed[p][1]=lp;
ed[p][3]=cs;
ed[p][4]=ls;
ed[p][6]=p;
ed[lp][ls]=p;
ed[lp][nu[lp]+ls]=1;
ed[cp][cs]=p;
ed[cp][nu[cp]+cs]=0;
ed[qp][qs]=-1;
qs=cycle_up(qs,qp);
cp=p++;
cs=2;
} else {
// We've found a point which is on the cutting plane.
// We're going to introduce a new point right here, but
// first we need to figure out the number of edges it
// has.
if(p==current_vertices) add_memory_vertices(vc);
// If the previous vertex detected a double edge, our
// new vertex will have one less edge.
k=double_edge?0:1;
qs=ed[qp][nu[qp]+qs];
qp=lp;
iqs=qs;
// Start testing the edges of the current point until
// we find one which isn't outside the cutting space
do {
k++;
qs=cycle_up(qs,qp);
lp=ed[qp][qs];
lw=m_test(lp,l);
} while (lw==-1);
// Now we need to find out whether this marginal vertex
// we are on has been visited before, because if that's
// the case, we need to add vertices to the existing
// new vertex, rather than creating a fresh one. We also
// need to figure out whether we're in a case where we
// might be creating a duplicate edge.
j=-ed[qp][nu[qp]<<1];
if(qp==up&&qs==us) {
// If we're heading into the final part of the
// new facet, then we never worry about the
// duplicate edge calculation.
new_double_edge=false;
if(j>0) k+=nu[j];
} else {
if(j>0) {
// This vertex was visited before, so
// count those vertices to the ones we
// already have.
k+=nu[j];
// The only time when we might make a
// duplicate edge is if the point we're
// going to move to next is also a
// marginal point, so test for that
// first.
if(lw==0) {
// Now see whether this marginal point
// has been visited before.
i=-ed[lp][nu[lp]<<1];
if(i>0) {
// Now see if the last edge of that other
// marginal point actually ends up here.
if(ed[i][nu[i]-1]==j) {
new_double_edge=true;
k-=1;
} else new_double_edge=false;
} else {
// That marginal point hasn't been visited
// before, so we probably don't have to worry
// about duplicate edges, except in the
// case when that's the way into the end
// of the facet, because that way always creates
// an edge.
if(j==rp&&lp==up&&ed[qp][nu[qp]+qs]==us) {
new_double_edge=true;
k-=1;
} else new_double_edge=false;
}
} else new_double_edge=false;
} else {
// The vertex hasn't been visited
// before, but let's see if it's
// marginal
if(lw==0) {
// If it is, we need to check
// for the case that it's a
// small branch, and that we're
// heading right back to where
// we came from
i=-ed[lp][nu[lp]<<1];
if(i==cp) {
new_double_edge=true;
k-=1;
} else new_double_edge=false;
} else new_double_edge=false;
}
}
// k now holds the number of edges of the new vertex
// we are forming. Add memory for it if it doesn't exist
// already.
while(k>=current_vertex_order) add_memory_vorder(vc);
if(mec[k]==mem[k]) add_memory(vc,k,stackp2);
// Now create a new vertex with order k, or augment
// the existing one
if(j>0) {
// If we're augmenting a vertex but we don't
// actually need any more edges, just skip this
// routine to avoid memory confusion
if(nu[j]!=k) {
// Allocate memory and copy the edges
// of the previous instance into it
vc.n_set_aux1(k);
edp=mep[k]+((k<<1)+1)*mec[k]++;
i=0;
while(i<nu[j]) {
vc.n_copy_aux1(j,i);
edp[i]=ed[j][i];
edp[k+i]=ed[j][nu[j]+i];
i++;
}
edp[k<<1]=j;
// Remove the previous instance with
// fewer vertices from the memory
// structure
edd=mep[nu[j]]+((nu[j]<<1)+1)*--mec[nu[j]];
if(edd!=ed[j]) {
for(lw=0;lw<=(nu[j]<<1);lw++) ed[j][lw]=edd[lw];
vc.n_set_aux2_copy(j,nu[j]);
vc.n_copy_pointer(edd[nu[j]<<1],j);
ed[edd[nu[j]<<1]]=ed[j];
}
vc.n_set_to_aux1(j);
ed[j]=edp;
} else i=nu[j];
} else {
// Allocate a new vertex of order k
vc.n_set_pointer(p,k);
ed[p]=mep[k]+((k<<1)+1)*mec[k]++;
ed[p][k<<1]=p;
if(stackp2==stacke2) add_memory_ds2(stackp2);
*(stackp2++)=qp;
pts[3*p]=pts[3*qp];
pts[3*p+1]=pts[3*qp+1];
pts[3*p+2]=pts[3*qp+2];
ed[qp][nu[qp]<<1]=-p;
j=p++;
i=0;
}
nu[j]=k;
// Unless the previous case was a double edge, connect
// the first available edge of the new vertex to the
// last one in the facet
if(!double_edge) {
ed[j][i]=cp;
ed[j][nu[j]+i]=cs;
vc.n_set(j,i,p_id);
ed[cp][cs]=j;
ed[cp][nu[cp]+cs]=i;
i++;
}
// Copy in the edges of the underlying vertex,
// and do one less if this was a double edge
qs=iqs;
while(i<(new_double_edge?k:k-1)) {
qs=cycle_up(qs,qp);
lp=ed[qp][qs];ls=ed[qp][nu[qp]+qs];
vc.n_copy(j,i,qp,qs);
ed[j][i]=lp;
ed[j][nu[j]+i]=ls;
ed[lp][ls]=j;
ed[lp][nu[lp]+ls]=i;
ed[qp][qs]=-1;
i++;
}
qs=cycle_up(qs,qp);
cs=i;
cp=j;
vc.n_copy(j,new_double_edge?0:cs,qp,qs);
// Update the double_edge flag, to pass it
// to the next instance of this routine
double_edge=new_double_edge;
}
}
// Connect the final created vertex to the initial one
ed[cp][cs]=rp;
*ed[rp]=cp;
ed[cp][nu[cp]+cs]=0;
ed[rp][nu[rp]]=cs;
// Delete points: first, remove any duplicates
dsp=ds;
while(dsp<stackp) {
j=*dsp;
if(ed[j][nu[j]]!=-1) {
ed[j][nu[j]]=-1;
dsp++;
} else *dsp=*(--stackp);
}
// Add the points in the auxiliary delete stack,
// and reset their back pointers
for(dsp=ds2;dsp<stackp2;dsp++) {
j=*dsp;
ed[j][nu[j]<<1]=j;
if(ed[j][nu[j]]!=-1) {