-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlConv.h
233 lines (148 loc) · 8.84 KB
/
lConv.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#ifndef LCONV_H
#define LCONV_H
#include "Layer.h"
#include <cmath>
#include <thread>
class lConv : public Layer {
private:
//Properties
int w_size;
//Weights and bias
Tensor weights;
Tensor bias;
//Gradients
Tensor dCdX;
Tensor dCdW;
Tensor dCdB;
public:
//Threading
std::vector<std::thread> t;
std::vector<bool> thread_status;
std::vector<std::thread> t_fb;
std::vector<bool> thread_status_fb;
//Constructor
lConv(int in_dim, int in_rows, int in_cols, int w_size) {
//Set dimensions
this->in_dim = in_dim;
this->out_dim = in_dim;
this->in_rows = in_rows;
this->in_cols = in_cols;
this->w_size = w_size;
out_rows = in_rows - w_size + 1;
out_cols = in_cols - w_size + 1;
//Redimension tensors
in.resize(in_dim, in_rows, in_cols);
out.resize(in_dim, out_rows, out_cols);
weights.resize(in_dim, w_size);
bias.resize(in_dim, 1, 1);
dCdX.resize(in_dim, in_rows, in_cols);
dCdW.resize(in_dim, w_size);
dCdB.resize(in_dim, 1, 1);
//Initialise weights and bias
weights.randn(0.0, 1.0);
bias.rand(0.0, 1.0);
//Threading
t.resize(in_dim);
thread_status.resize(in_dim);
t_fb.resize(in_dim);
thread_status_fb.resize(in_dim);
}
//Properties
char getType() { return 'c'; }
Tensor getWeights() { return weights; }
//Functions
void feedforward_dim( int d ) {
for (int m = 0; m < out_rows; m++) {
for (int n = 0; n < out_cols; n++) {
out(d, m, n) = bias(d, 0 , 0); //Add bias
for (int i = 0; i < w_size; i++) {
for (int j = 0; j < w_size; j++) {
//Check bounds and convolve
if (m - i >= 0 && n - j >= 0 && m - i < in_rows && n - j < in_cols)
out(d, m, n) += in(d, m - i, n - j) * weights(d, i, j);
}
}
//Apply non-linearity (ReLU)
if (out(d, m, n) < 0)
out(d, m, n) = 0;
}
}
thread_status[d] = false;
return;
}
Tensor feedforward( Tensor in ) {
this->in = in.copy();
for (int d = 0; d < in_dim; d++) {
thread_status[d] = true;
t[d] = std::thread([=] { feedforward_dim(d); });
}
bool threads_active = true;
while (threads_active) {
threads_active = false;
for (int d = 0; d < in_dim; d++)
if (thread_status[d])
threads_active = true;
}
for (int d = 0; d < in_dim; d++)
t[d].join();
return out;
}
void feedback_dim( int d, Tensor delta ) {
for (int m = 0; m < out_rows; m++) {
for (int n = 0; n < out_cols; n++) {
if (out(d, m, n) > 0) { //ReLu derivative property
//Bias
dCdB(d, 0, 0) += delta(d, m, n) * 0.01;
//Deltas
for (int a = 0; a < in_rows; a++) {
for (int b = 0; b < in_cols; b++) {
if (m - a >= 0 && n - b >= 0 && m - a < w_size && n - b < w_size)
dCdX(d, a, b) += delta(d, m, n) * weights(d, m - a, n - b);
}
}
//Weights
for (int a = 0; a < w_size; a++) {
for (int b = 0; b < w_size; b++) {
if (m - a >= 0 && n - b >= 0 && m - a < in_rows && n - b < in_cols)
dCdW(d, a, b) += delta(d, m , n) * in(d, m - a, n - b);
}
}
}
}
}
thread_status_fb[d] = false;
return;
}
Tensor feedback( Tensor delta ) {
//Reset gradients
dCdX.clear();
dCdW.clear();
dCdB.clear();
for (int d = 0; d < in_dim; d++) {
thread_status_fb[d] = true;
t_fb[d] = std::thread([=] { feedback_dim(d, delta); });
}
bool threads_active = true;
while (threads_active) {
threads_active = false;
for (int d = 0; d < in_dim; d++)
if (thread_status_fb[d])
threads_active = true;
}
for (int d = 0; d < in_dim; d++)
t_fb[d].join();
return dCdX;
}
void updateweights( float rate ) {
for (int d = 0; d < in_dim; d++) {
//Update bias
bias(d, 0, 0) -= rate * dCdB(d, 0, 0);
//Update kernel
for (int i = 0; i < w_size; i++)
for (int j = 0; j < w_size; j++)
weights(d, i, j) -= rate * dCdW(d, i, j);
}
return;
}
};
#endif