-
-
Notifications
You must be signed in to change notification settings - Fork 2k
/
expr.py
10957 lines (9771 loc) · 393 KB
/
expr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import contextlib
import math
import operator
import warnings
from collections.abc import Collection, Mapping, Sequence
from datetime import timedelta
from functools import reduce
from io import BytesIO, StringIO
from pathlib import Path
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
NoReturn,
TypeVar,
)
import polars._reexport as pl
from polars import functions as F
from polars._utils.convert import negate_duration_string, parse_as_duration_string
from polars._utils.deprecation import (
deprecate_function,
deprecate_renamed_parameter,
issue_deprecation_warning,
)
from polars._utils.parse import (
parse_into_expression,
parse_into_list_of_expressions,
parse_predicates_constraints_into_expression,
)
from polars._utils.unstable import issue_unstable_warning, unstable
from polars._utils.various import (
BUILDING_SPHINX_DOCS,
extend_bool,
find_stacklevel,
no_default,
normalize_filepath,
sphinx_accessor,
warn_null_comparison,
)
from polars.datatypes import Int64, is_polars_dtype, parse_into_dtype
from polars.dependencies import _check_for_numpy
from polars.dependencies import numpy as np
from polars.exceptions import CustomUFuncWarning, PolarsInefficientMapWarning
from polars.expr.array import ExprArrayNameSpace
from polars.expr.binary import ExprBinaryNameSpace
from polars.expr.categorical import ExprCatNameSpace
from polars.expr.datetime import ExprDateTimeNameSpace
from polars.expr.list import ExprListNameSpace
from polars.expr.meta import ExprMetaNameSpace
from polars.expr.name import ExprNameNameSpace
from polars.expr.string import ExprStringNameSpace
from polars.expr.struct import ExprStructNameSpace
from polars.meta import thread_pool_size
with contextlib.suppress(ImportError): # Module not available when building docs
from polars.polars import arg_where as py_arg_where
with contextlib.suppress(ImportError): # Module not available when building docs
from polars.polars import PyExpr
if TYPE_CHECKING:
import sys
from collections.abc import Iterable
from io import IOBase
from polars import DataFrame, LazyFrame, Series
from polars._typing import (
ClosedInterval,
FillNullStrategy,
InterpolationMethod,
IntoExpr,
IntoExprColumn,
MapElementsStrategy,
NullBehavior,
NumericLiteral,
PolarsDataType,
RankMethod,
RollingInterpolationMethod,
SearchSortedSide,
SerializationFormat,
TemporalLiteral,
WindowMappingStrategy,
)
from polars._utils.various import (
NoDefault,
)
if sys.version_info >= (3, 11):
from typing import Concatenate, ParamSpec
else:
from typing_extensions import Concatenate, ParamSpec
T = TypeVar("T")
P = ParamSpec("P")
elif BUILDING_SPHINX_DOCS:
property = sphinx_accessor
class Expr:
"""Expressions that can be used in various contexts."""
_pyexpr: PyExpr = None
_accessors: ClassVar[set[str]] = {
"arr",
"cat",
"dt",
"list",
"meta",
"name",
"str",
"bin",
"struct",
}
@classmethod
def _from_pyexpr(cls, pyexpr: PyExpr) -> Expr:
expr = cls.__new__(cls)
expr._pyexpr = pyexpr
return expr
def _repr_html_(self) -> str:
return self._pyexpr.to_str()
def __repr__(self) -> str:
if len(expr_str := self._pyexpr.to_str()) > 30:
expr_str = f"{expr_str[:30]}…"
return f"<{self.__class__.__name__} [{expr_str!r}] at 0x{id(self):X}>"
def __str__(self) -> str:
return self._pyexpr.to_str()
def __bool__(self) -> NoReturn:
msg = (
"the truth value of an Expr is ambiguous"
"\n\n"
"You probably got here by using a Python standard library function instead "
"of the native expressions API.\n"
"Here are some things you might want to try:\n"
"- instead of `pl.col('a') and pl.col('b')`, use `pl.col('a') & pl.col('b')`\n"
"- instead of `pl.col('a') in [y, z]`, use `pl.col('a').is_in([y, z])`\n"
"- instead of `max(pl.col('a'), pl.col('b'))`, use `pl.max_horizontal(pl.col('a'), pl.col('b'))`\n"
)
raise TypeError(msg)
def __abs__(self) -> Expr:
return self.abs()
# operators
def __add__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other, str_as_lit=True)
return self._from_pyexpr(self._pyexpr + other)
def __radd__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other, str_as_lit=True)
return self._from_pyexpr(other + self._pyexpr)
def __and__(self, other: IntoExprColumn | int | bool) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(self._pyexpr.and_(other))
def __rand__(self, other: IntoExprColumn | int | bool) -> Expr:
other_expr = parse_into_expression(other)
return self._from_pyexpr(other_expr.and_(self._pyexpr))
def __eq__(self, other: IntoExpr) -> Expr: # type: ignore[override]
warn_null_comparison(other)
other = parse_into_expression(other, str_as_lit=True)
return self._from_pyexpr(self._pyexpr.eq(other))
def __floordiv__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(self._pyexpr // other)
def __rfloordiv__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(other // self._pyexpr)
def __ge__(self, other: IntoExpr) -> Expr:
warn_null_comparison(other)
other = parse_into_expression(other, str_as_lit=True)
return self._from_pyexpr(self._pyexpr.gt_eq(other))
def __gt__(self, other: IntoExpr) -> Expr:
warn_null_comparison(other)
other = parse_into_expression(other, str_as_lit=True)
return self._from_pyexpr(self._pyexpr.gt(other))
def __invert__(self) -> Expr:
return self.not_()
def __le__(self, other: IntoExpr) -> Expr:
warn_null_comparison(other)
other = parse_into_expression(other, str_as_lit=True)
return self._from_pyexpr(self._pyexpr.lt_eq(other))
def __lt__(self, other: IntoExpr) -> Expr:
warn_null_comparison(other)
other = parse_into_expression(other, str_as_lit=True)
return self._from_pyexpr(self._pyexpr.lt(other))
def __mod__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(self._pyexpr % other)
def __rmod__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(other % self._pyexpr)
def __mul__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(self._pyexpr * other)
def __rmul__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(other * self._pyexpr)
def __ne__(self, other: IntoExpr) -> Expr: # type: ignore[override]
warn_null_comparison(other)
other = parse_into_expression(other, str_as_lit=True)
return self._from_pyexpr(self._pyexpr.neq(other))
def __neg__(self) -> Expr:
return self._from_pyexpr(-self._pyexpr)
def __or__(self, other: IntoExprColumn | int | bool) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(self._pyexpr.or_(other))
def __ror__(self, other: IntoExprColumn | int | bool) -> Expr:
other_expr = parse_into_expression(other)
return self._from_pyexpr(other_expr.or_(self._pyexpr))
def __pos__(self) -> Expr:
return self
def __pow__(self, exponent: IntoExprColumn | int | float) -> Expr:
exponent = parse_into_expression(exponent)
return self._from_pyexpr(self._pyexpr.pow(exponent))
def __rpow__(self, base: IntoExprColumn | int | float) -> Expr:
base = parse_into_expression(base)
return self._from_pyexpr(base) ** self
def __sub__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(self._pyexpr - other)
def __rsub__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(other - self._pyexpr)
def __truediv__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(self._pyexpr / other)
def __rtruediv__(self, other: IntoExpr) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(other / self._pyexpr)
def __xor__(self, other: IntoExprColumn | int | bool) -> Expr:
other = parse_into_expression(other)
return self._from_pyexpr(self._pyexpr.xor_(other))
def __rxor__(self, other: IntoExprColumn | int | bool) -> Expr:
other_expr = parse_into_expression(other)
return self._from_pyexpr(other_expr.xor_(self._pyexpr))
def __getstate__(self) -> bytes:
return self._pyexpr.__getstate__()
def __setstate__(self, state: bytes) -> None:
self._pyexpr = F.lit(0)._pyexpr # Initialize with a dummy
self._pyexpr.__setstate__(state)
def __array_ufunc__(
self, ufunc: Callable[..., Any], method: str, *inputs: Any, **kwargs: Any
) -> Expr:
"""Numpy universal functions."""
if method != "__call__":
msg = f"Only call is implemented not {method}"
raise NotImplementedError(msg)
# Numpy/Scipy ufuncs have signature None but numba signatures always exists.
is_custom_ufunc = getattr(ufunc, "signature") is not None # noqa: B009
num_expr = sum(isinstance(inp, Expr) for inp in inputs)
exprs = [
(inp, True, i) if isinstance(inp, Expr) else (inp, False, i)
for i, inp in enumerate(inputs)
]
if num_expr == 1:
root_expr = next(expr[0] for expr in exprs if expr[1])
else:
# We rename all but the first expression in case someone did e.g.
# np.divide(pl.col("a"), pl.col("a")); we'll be creating a struct
# below, and structs can't have duplicate names.
first_renameable_expr = True
actual_exprs = []
for inp, is_actual_expr, index in exprs:
if is_actual_expr:
if first_renameable_expr:
first_renameable_expr = False
else:
inp = inp.alias(f"argument_{index}")
actual_exprs.append(inp)
root_expr = F.struct(actual_exprs)
def function(s: Series) -> Series: # pragma: no cover
args: list[Any] = []
for i, expr in enumerate(exprs):
if expr[1] and num_expr > 1:
args.append(s.struct[i])
elif expr[1]:
args.append(s)
else:
args.append(expr[0])
return ufunc(*args, **kwargs)
if is_custom_ufunc is True:
msg = (
"Native numpy ufuncs are dispatched using `map_batches(ufunc, is_elementwise=True)` which "
"is safe for native Numpy and Scipy ufuncs but custom ufuncs in a group_by "
"context won't be properly grouped. Custom ufuncs are dispatched with is_elementwise=False. "
f"If {ufunc.__name__} needs elementwise then please use map_batches directly."
)
warnings.warn(
msg,
CustomUFuncWarning,
stacklevel=find_stacklevel(),
)
return root_expr.map_batches(function, is_elementwise=False)
return root_expr.map_batches(function, is_elementwise=True)
@classmethod
def deserialize(
cls,
source: str | Path | IOBase | bytes,
*,
format: SerializationFormat = "binary",
) -> Expr:
"""
Read a serialized expression from a file.
Parameters
----------
source
Path to a file or a file-like object (by file-like object, we refer to
objects that have a `read()` method, such as a file handler (e.g.
via builtin `open` function) or `BytesIO`).
format
The format with which the Expr was serialized. Options:
- `"binary"`: Deserialize from binary format (bytes). This is the default.
- `"json"`: Deserialize from JSON format (string).
Warnings
--------
This function uses :mod:`pickle` if the logical plan contains Python UDFs,
and as such inherits the security implications. Deserializing can execute
arbitrary code, so it should only be attempted on trusted data.
See Also
--------
Expr.meta.serialize
Notes
-----
Serialization is not stable across Polars versions: a LazyFrame serialized
in one Polars version may not be deserializable in another Polars version.
Examples
--------
>>> import io
>>> expr = pl.col("foo").sum().over("bar")
>>> bytes = expr.meta.serialize()
>>> pl.Expr.deserialize(io.BytesIO(bytes)) # doctest: +ELLIPSIS
<Expr ['col("foo").sum().over([col("ba…'] at ...>
"""
if isinstance(source, StringIO):
source = BytesIO(source.getvalue().encode())
elif isinstance(source, (str, Path)):
source = normalize_filepath(source)
elif isinstance(source, bytes):
source = BytesIO(source)
if format == "binary":
deserializer = PyExpr.deserialize_binary
elif format == "json":
deserializer = PyExpr.deserialize_json
else:
msg = f"`format` must be one of {{'binary', 'json'}}, got {format!r}"
raise ValueError(msg)
return cls._from_pyexpr(deserializer(source))
def to_physical(self) -> Expr:
"""
Cast to physical representation of the logical dtype.
- :func:`polars.datatypes.Date` -> :func:`polars.datatypes.Int32`
- :func:`polars.datatypes.Datetime` -> :func:`polars.datatypes.Int64`
- :func:`polars.datatypes.Time` -> :func:`polars.datatypes.Int64`
- :func:`polars.datatypes.Duration` -> :func:`polars.datatypes.Int64`
- :func:`polars.datatypes.Categorical` -> :func:`polars.datatypes.UInt32`
- `List(inner)` -> `List(physical of inner)`
- `Array(inner)` -> `Struct(physical of inner)`
- `Struct(fields)` -> `Array(physical of fields)`
Other data types will be left unchanged.
Warnings
--------
The physical representations are an implementation detail
and not guaranteed to be stable.
Examples
--------
Replicating the pandas
`pd.factorize
<https://pandas.pydata.org/docs/reference/api/pandas.factorize.html>`_
function.
>>> pl.DataFrame({"vals": ["a", "x", None, "a"]}).with_columns(
... pl.col("vals").cast(pl.Categorical),
... pl.col("vals")
... .cast(pl.Categorical)
... .to_physical()
... .alias("vals_physical"),
... )
shape: (4, 2)
┌──────┬───────────────┐
│ vals ┆ vals_physical │
│ --- ┆ --- │
│ cat ┆ u32 │
╞══════╪═══════════════╡
│ a ┆ 0 │
│ x ┆ 1 │
│ null ┆ null │
│ a ┆ 0 │
└──────┴───────────────┘
"""
return self._from_pyexpr(self._pyexpr.to_physical())
def any(self, *, ignore_nulls: bool = True) -> Expr:
"""
Return whether any of the values in the column are `True`.
Only works on columns of data type :class:`Boolean`.
Parameters
----------
ignore_nulls
Ignore null values (default).
If set to `False`, `Kleene logic`_ is used to deal with nulls:
if the column contains any null values and no `True` values,
the output is null.
.. _Kleene logic: https://en.wikipedia.org/wiki/Three-valued_logic
Returns
-------
Expr
Expression of data type :class:`Boolean`.
Examples
--------
>>> df = pl.DataFrame(
... {
... "a": [True, False],
... "b": [False, False],
... "c": [None, False],
... }
... )
>>> df.select(pl.col("*").any())
shape: (1, 3)
┌──────┬───────┬───────┐
│ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- │
│ bool ┆ bool ┆ bool │
╞══════╪═══════╪═══════╡
│ true ┆ false ┆ false │
└──────┴───────┴───────┘
Enable Kleene logic by setting `ignore_nulls=False`.
>>> df.select(pl.col("*").any(ignore_nulls=False))
shape: (1, 3)
┌──────┬───────┬──────┐
│ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- │
│ bool ┆ bool ┆ bool │
╞══════╪═══════╪══════╡
│ true ┆ false ┆ null │
└──────┴───────┴──────┘
"""
return self._from_pyexpr(self._pyexpr.any(ignore_nulls))
def all(self, *, ignore_nulls: bool = True) -> Expr:
"""
Return whether all values in the column are `True`.
Only works on columns of data type :class:`Boolean`.
.. note::
This method is not to be confused with the function :func:`polars.all`,
which can be used to select all columns.
Parameters
----------
ignore_nulls
Ignore null values (default).
If set to `False`, `Kleene logic`_ is used to deal with nulls:
if the column contains any null values and no `False` values,
the output is null.
.. _Kleene logic: https://en.wikipedia.org/wiki/Three-valued_logic
Returns
-------
Expr
Expression of data type :class:`Boolean`.
Examples
--------
>>> df = pl.DataFrame(
... {
... "a": [True, True],
... "b": [False, True],
... "c": [None, True],
... }
... )
>>> df.select(pl.col("*").all())
shape: (1, 3)
┌──────┬───────┬──────┐
│ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- │
│ bool ┆ bool ┆ bool │
╞══════╪═══════╪══════╡
│ true ┆ false ┆ true │
└──────┴───────┴──────┘
Enable Kleene logic by setting `ignore_nulls=False`.
>>> df.select(pl.col("*").all(ignore_nulls=False))
shape: (1, 3)
┌──────┬───────┬──────┐
│ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- │
│ bool ┆ bool ┆ bool │
╞══════╪═══════╪══════╡
│ true ┆ false ┆ null │
└──────┴───────┴──────┘
"""
return self._from_pyexpr(self._pyexpr.all(ignore_nulls))
def arg_true(self) -> Expr:
"""
Return indices where expression evaluates `True`.
.. warning::
Modifies number of rows returned, so will fail in combination with other
expressions. Use as only expression in `select` / `with_columns`.
See Also
--------
Series.arg_true : Return indices where Series is True
polars.arg_where
Examples
--------
>>> df = pl.DataFrame({"a": [1, 1, 2, 1]})
>>> df.select((pl.col("a") == 1).arg_true())
shape: (3, 1)
┌─────┐
│ a │
│ --- │
│ u32 │
╞═════╡
│ 0 │
│ 1 │
│ 3 │
└─────┘
"""
return self._from_pyexpr(py_arg_where(self._pyexpr))
def sqrt(self) -> Expr:
"""
Compute the square root of the elements.
Examples
--------
>>> df = pl.DataFrame({"values": [1.0, 2.0, 4.0]})
>>> df.select(pl.col("values").sqrt())
shape: (3, 1)
┌──────────┐
│ values │
│ --- │
│ f64 │
╞══════════╡
│ 1.0 │
│ 1.414214 │
│ 2.0 │
└──────────┘
"""
return self._from_pyexpr(self._pyexpr.sqrt())
def cbrt(self) -> Expr:
"""
Compute the cube root of the elements.
Examples
--------
>>> df = pl.DataFrame({"values": [1.0, 2.0, 4.0]})
>>> df.select(pl.col("values").cbrt())
shape: (3, 1)
┌──────────┐
│ values │
│ --- │
│ f64 │
╞══════════╡
│ 1.0 │
│ 1.259921 │
│ 1.587401 │
└──────────┘
"""
return self._from_pyexpr(self._pyexpr.cbrt())
def log10(self) -> Expr:
"""
Compute the base 10 logarithm of the input array, element-wise.
Examples
--------
>>> df = pl.DataFrame({"values": [1.0, 2.0, 4.0]})
>>> df.select(pl.col("values").log10())
shape: (3, 1)
┌─────────┐
│ values │
│ --- │
│ f64 │
╞═════════╡
│ 0.0 │
│ 0.30103 │
│ 0.60206 │
└─────────┘
"""
return self.log(10.0)
def exp(self) -> Expr:
"""
Compute the exponential, element-wise.
Examples
--------
>>> df = pl.DataFrame({"values": [1.0, 2.0, 4.0]})
>>> df.select(pl.col("values").exp())
shape: (3, 1)
┌──────────┐
│ values │
│ --- │
│ f64 │
╞══════════╡
│ 2.718282 │
│ 7.389056 │
│ 54.59815 │
└──────────┘
"""
return self._from_pyexpr(self._pyexpr.exp())
def alias(self, name: str) -> Expr:
"""
Rename the expression.
Parameters
----------
name
The new name.
See Also
--------
name.map
name.prefix
name.suffix
Examples
--------
Rename an expression to avoid overwriting an existing column.
>>> df = pl.DataFrame(
... {
... "a": [1, 2, 3],
... "b": ["x", "y", "z"],
... }
... )
>>> df.with_columns(
... pl.col("a") + 10,
... pl.col("b").str.to_uppercase().alias("c"),
... )
shape: (3, 3)
┌─────┬─────┬─────┐
│ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ str │
╞═════╪═════╪═════╡
│ 11 ┆ x ┆ X │
│ 12 ┆ y ┆ Y │
│ 13 ┆ z ┆ Z │
└─────┴─────┴─────┘
Overwrite the default name of literal columns to prevent errors due to duplicate
column names.
>>> df.with_columns(
... pl.lit(True).alias("c"),
... pl.lit(4.0).alias("d"),
... )
shape: (3, 4)
┌─────┬─────┬──────┬─────┐
│ a ┆ b ┆ c ┆ d │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ bool ┆ f64 │
╞═════╪═════╪══════╪═════╡
│ 1 ┆ x ┆ true ┆ 4.0 │
│ 2 ┆ y ┆ true ┆ 4.0 │
│ 3 ┆ z ┆ true ┆ 4.0 │
└─────┴─────┴──────┴─────┘
"""
return self._from_pyexpr(self._pyexpr.alias(name))
def exclude(
self,
columns: str | PolarsDataType | Collection[str] | Collection[PolarsDataType],
*more_columns: str | PolarsDataType,
) -> Expr:
"""
Exclude columns from a multi-column expression.
Only works after a wildcard or regex column selection, and you cannot provide
both string column names *and* dtypes (you may prefer to use selectors instead).
Parameters
----------
columns
The name or datatype of the column(s) to exclude. Accepts regular expression
input. Regular expressions should start with `^` and end with `$`.
*more_columns
Additional names or datatypes of columns to exclude, specified as positional
arguments.
Examples
--------
>>> df = pl.DataFrame(
... {
... "aa": [1, 2, 3],
... "ba": ["a", "b", None],
... "cc": [None, 2.5, 1.5],
... }
... )
>>> df
shape: (3, 3)
┌─────┬──────┬──────┐
│ aa ┆ ba ┆ cc │
│ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ f64 │
╞═════╪══════╪══════╡
│ 1 ┆ a ┆ null │
│ 2 ┆ b ┆ 2.5 │
│ 3 ┆ null ┆ 1.5 │
└─────┴──────┴──────┘
Exclude by column name(s):
>>> df.select(pl.all().exclude("ba"))
shape: (3, 2)
┌─────┬──────┐
│ aa ┆ cc │
│ --- ┆ --- │
│ i64 ┆ f64 │
╞═════╪══════╡
│ 1 ┆ null │
│ 2 ┆ 2.5 │
│ 3 ┆ 1.5 │
└─────┴──────┘
Exclude by regex, e.g. removing all columns whose names end with the letter "a":
>>> df.select(pl.all().exclude("^.*a$"))
shape: (3, 1)
┌──────┐
│ cc │
│ --- │
│ f64 │
╞══════╡
│ null │
│ 2.5 │
│ 1.5 │
└──────┘
Exclude by dtype(s), e.g. removing all columns of type Int64 or Float64:
>>> df.select(pl.all().exclude([pl.Int64, pl.Float64]))
shape: (3, 1)
┌──────┐
│ ba │
│ --- │
│ str │
╞══════╡
│ a │
│ b │
│ null │
└──────┘
"""
exclude_cols: list[str] = []
exclude_dtypes: list[PolarsDataType] = []
for item in (
*(
columns
if isinstance(columns, Collection) and not isinstance(columns, str)
else [columns]
),
*more_columns,
):
if isinstance(item, str):
exclude_cols.append(item)
elif is_polars_dtype(item):
exclude_dtypes.append(item)
else:
msg = (
"invalid input for `exclude`"
f"\n\nExpected one or more `str` or `DataType`; found {item!r} instead."
)
raise TypeError(msg)
if exclude_cols and exclude_dtypes:
msg = "cannot exclude by both column name and dtype; use a selector instead"
raise TypeError(msg)
elif exclude_dtypes:
return self._from_pyexpr(self._pyexpr.exclude_dtype(exclude_dtypes))
else:
return self._from_pyexpr(self._pyexpr.exclude(exclude_cols))
def pipe(
self,
function: Callable[Concatenate[Expr, P], T],
*args: P.args,
**kwargs: P.kwargs,
) -> T:
r'''
Offers a structured way to apply a sequence of user-defined functions (UDFs).
Parameters
----------
function
Callable; will receive the expression as the first parameter,
followed by any given args/kwargs.
*args
Arguments to pass to the UDF.
**kwargs
Keyword arguments to pass to the UDF.
Examples
--------
>>> def extract_number(expr: pl.Expr) -> pl.Expr:
... """Extract the digits from a string."""
... return expr.str.extract(r"\d+", 0).cast(pl.Int64)
>>>
>>> def scale_negative_even(expr: pl.Expr, *, n: int = 1) -> pl.Expr:
... """Set even numbers negative, and scale by a user-supplied value."""
... expr = pl.when(expr % 2 == 0).then(-expr).otherwise(expr)
... return expr * n
>>>
>>> df = pl.DataFrame({"val": ["a: 1", "b: 2", "c: 3", "d: 4"]})
>>> df.with_columns(
... udfs=(
... pl.col("val").pipe(extract_number).pipe(scale_negative_even, n=5)
... ),
... )
shape: (4, 2)
┌──────┬──────┐
│ val ┆ udfs │
│ --- ┆ --- │
│ str ┆ i64 │
╞══════╪══════╡
│ a: 1 ┆ 5 │
│ b: 2 ┆ -10 │
│ c: 3 ┆ 15 │
│ d: 4 ┆ -20 │
└──────┴──────┘
'''
return function(self, *args, **kwargs)
def not_(self) -> Expr:
"""
Negate a boolean expression.
Examples
--------
>>> df = pl.DataFrame(
... {
... "a": [True, False, False],
... "b": ["a", "b", None],
... }
... )
>>> df
shape: (3, 2)
┌───────┬──────┐
│ a ┆ b │
│ --- ┆ --- │
│ bool ┆ str │
╞═══════╪══════╡
│ true ┆ a │
│ false ┆ b │
│ false ┆ null │
└───────┴──────┘
>>> df.select(pl.col("a").not_())
shape: (3, 1)
┌───────┐
│ a │
│ --- │
│ bool │
╞═══════╡
│ false │
│ true │
│ true │
└───────┘
"""
return self._from_pyexpr(self._pyexpr.not_())
def is_null(self) -> Expr:
"""
Returns a boolean Series indicating which values are null.
Examples
--------
>>> df = pl.DataFrame(
... {
... "a": [1, 2, None, 1, 5],
... "b": [1.0, 2.0, float("nan"), 1.0, 5.0],
... }
... )
>>> df.with_columns(pl.all().is_null().name.suffix("_isnull")) # nan != null
shape: (5, 4)
┌──────┬─────┬──────────┬──────────┐
│ a ┆ b ┆ a_isnull ┆ b_isnull │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ f64 ┆ bool ┆ bool │
╞══════╪═════╪══════════╪══════════╡
│ 1 ┆ 1.0 ┆ false ┆ false │
│ 2 ┆ 2.0 ┆ false ┆ false │
│ null ┆ NaN ┆ true ┆ false │
│ 1 ┆ 1.0 ┆ false ┆ false │
│ 5 ┆ 5.0 ┆ false ┆ false │
└──────┴─────┴──────────┴──────────┘
"""
return self._from_pyexpr(self._pyexpr.is_null())
def is_not_null(self) -> Expr:
"""
Returns a boolean Series indicating which values are not null.
Examples
--------
>>> df = pl.DataFrame(
... {
... "a": [1, 2, None, 1, 5],
... "b": [1.0, 2.0, float("nan"), 1.0, 5.0],
... }
... )
>>> df.with_columns(
... pl.all().is_not_null().name.suffix("_not_null") # nan != null
... )
shape: (5, 4)
┌──────┬─────┬────────────┬────────────┐
│ a ┆ b ┆ a_not_null ┆ b_not_null │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ f64 ┆ bool ┆ bool │
╞══════╪═════╪════════════╪════════════╡
│ 1 ┆ 1.0 ┆ true ┆ true │
│ 2 ┆ 2.0 ┆ true ┆ true │
│ null ┆ NaN ┆ false ┆ true │
│ 1 ┆ 1.0 ┆ true ┆ true │
│ 5 ┆ 5.0 ┆ true ┆ true │
└──────┴─────┴────────────┴────────────┘
"""
return self._from_pyexpr(self._pyexpr.is_not_null())
def is_finite(self) -> Expr:
"""
Returns a boolean Series indicating which values are finite.
Returns
-------
Expr