forked from amaas/rnn-speech-denoising
-
Notifications
You must be signed in to change notification settings - Fork 3
/
rnn_params2stack.m
72 lines (66 loc) · 2.31 KB
/
rnn_params2stack.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function [ stack, W_t ] = rnn_params2stack( params, eI )
%RNN_PARAMS2STACK Convert single parameter vector to stack weight structure
% Extracts stack based on architecture information in eI
stack = cell(1, numel(eI.layerSizes));
prevSize = eI.inputDim;
p = 1;
%% default weight tying to false
if ~isfield(eI, 'tieWeights')
eI.tieWeights = 0;
end;
if eI.tieWeights
assert(mod(numel(eI.layerSizes),2) == 0, ...
'Tied weights must have even layersize length');
end;
%% default short circuits to false
if ~isfield(eI, 'shortCircuit')
eI.shortCircuit = 0;
end;
%% pull weights from vector
for l = 1 : numel(eI.layerSizes)
stack{l}=struct;
% index parameters from large vector and reshape
curSize = eI.layerSizes(l);
% weight matrix
wSize = curSize * prevSize;
if ~eI.tieWeights || l <= numel(eI.layerSizes)/2 ...
|| l == numel(eI.layerSizes)
% this is a weight layer with stored weights
stack{l}.W = reshape(params(p:p+wSize-1), curSize, prevSize);
p = p+wSize;
else
% tied weights layer with duplicate weights
lEnc = numel(eI.layerSizes) - l + 1;
stack{l}.W = stack{lEnc}.W';
end;
% bias vector. even tied layers have this distinct
stack{l}.b = params(p:p+curSize-1);
% populate the tied weights layer
% if l > 1
% lDec = l-1 + floor(numel(eI.layerSizes)/2);
% assert(layerSizes(l)==layerSizes(lDec), ...
% 'layzersizes not compatible with tied weights');
% stack{lDec}=struct;
% stack{lDec}.W = stack{l}.W';
% stack{lDec}.b = stack{l-1}.b;
% end;
p = p+curSize;
prevSize = curSize;
end
%% extract recurrent matrix if it existsa
W_t = [];
if eI.temporalLayer
wSize = eI.layerSizes(eI.temporalLayer) ^ 2;
W_t = reshape(params(p:p+wSize-1),eI.layerSizes(eI.temporalLayer),...
eI.layerSizes(eI.temporalLayer));
p = p+wSize;
end
%% extract short circuit layer
if eI.shortCircuit
wSize = eI.inputDim * eI.layerSizes(end);
stack{end}.W_ss = reshape(params(p:p+wSize-1), eI.layerSizes(end),...
eI.inputDim);
p = p+wSize;
end;
%% check all parameters accounted for
assert(p-1 == numel(params));