-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdataset.py
209 lines (154 loc) · 6.75 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
from torch.utils.data import Dataset
import json
import os
from PIL import Image , ImageEnhance
import torchvision.transforms as transforms
from plot import verify
import random
from tools import RPM
class Dataset(Dataset):
def __init__(self, data_folder , rpm, split, std_scaling=4.0, image_resize_size=None , debug=False , data_format= 'bg_first' , save_evaluations= False):
self.split = split.upper()
assert self.split in {'TRAIN', 'TEST'}
self.data_folder = data_folder
# Read data files
with open(os.path.join(data_folder, self.split + '_images.json'), 'r') as j:
self.images = json.load(j)
with open(os.path.join(data_folder, self.split + '_objects.json'), 'r') as j:
self.objects = json.load(j)
assert len(self.images) == len(self.objects)
# self.labels = labels
if self.split == 'TRAIN':
self.transform = Transform(train=True , resize_size=image_resize_size)
else:
self.transform = Transform(train=False , resize_size=image_resize_size)
self.rpm = rpm
self.std_scaling = std_scaling
self.image_resize_size = image_resize_size
self.debug = debug
self.data_format = data_format
self.save_evaluations = save_evaluations
def __getitem__(self, i, verify_image=False ):
# Read image
image = Image.open(self.images[i], mode='r')
image = image.convert('RGB')
# Read objects in this image (bounding boxes, labels)
objects = self.objects[i]
boxes = objects['boxes']
labels = objects['labels']
if self.data_format == 'bg_first':
labels = [l-1 for l in labels ]
if verify_image:
verify(image, boxes, labels)
# Apply transformations
image, boxes = self.transform.apply_transform(image, boxes)
if self.image_resize_size:
y_is_box_label, y_rpn_regr, num_pos = self.rpm.calc_rpn(boxes , labels, image_resize_size=self.image_resize_size)
else:
y_is_box_label, y_rpn_regr, num_pos = self.rpm.calc_rpn(boxes , labels, image_resize_size=(image.size[1], image.size[0] ))
y_rpn_regr = y_rpn_regr * self.std_scaling
if not self.debug:
boxes = torch.FloatTensor(boxes) # (n_objects, 4)
# labels = torch.LongTensor(labels) # (n_objects)
y_is_box_label = torch.FloatTensor(y_is_box_label)
y_rpn_regr = torch.FloatTensor(y_rpn_regr)
if self.debug:
image = self.transform.to_tensor(image)
else:
image = self.transform.normalize( self.transform.to_tensor(image) )
return image, boxes, labels , [y_is_box_label, y_rpn_regr], num_pos
def __len__(self):
return len(self.images)
def collate_fn( batch):
"""
Since each image may have a different number of objects, we need a collate function (to be passed to the DataLoader).
This describes how to combine these tensors of different sizes. We use lists.
:param batch: an iterable of N sets from __getitem__()
:return: a tensor of images, lists of varying-size tensors of bounding boxes, labels
"""
images = list()
boxes = list()
labels = list()
y_is_box_label = list()
num_pos = list()
y_rpn_regr = list()
for b in batch:
images.append(b[0])
boxes.append(b[1])
labels.append(b[2])
y_is_box_label.append(b[3][0])
y_rpn_regr.append(b[3][1])
num_pos.append(b[4])
images = torch.stack(images, dim=0)
y_is_box_label = torch.cat(y_is_box_label, dim=0)
y_rpn_regr = torch.cat(y_rpn_regr, dim=0)
return images, boxes, labels , [y_is_box_label, y_rpn_regr] , num_pos
# dataformat : ith index ==> img_data == dict, keys : 'bboxes' , 'image' , 'class', len(dict[bboxes] == len(dict[bboxes])
def flip(image, boxes):
# Flip image
new_image = image.transpose(Image.FLIP_LEFT_RIGHT)
# new_image = FT.hflip(image)
# Flip boxes
boxes = [ [image.width - cord -1 if i % 2 ==0 else cord for i,cord in enumerate(box) ] for box in boxes]
boxes = [ [box[2] ,box[1] , box[0], box[3]] for box in boxes]
return new_image, boxes
class Transform(object):
"""docstring for Transform"""
def __init__(self, train , resize_size=None):
super(Transform, self).__init__()
self.train = train
self.to_tensor = transforms.ToTensor()
if resize_size:
self.resize_size = (resize_size[1] , resize_size[0])
else:
self.resize_size = None
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def apply_transform(self, image, boxes ) :
if self.resize_size:
orig_size = image.size
# (4032, 3024) :: w x h
image = image.resize( self.resize_size )
# self.resize_size :: h x w
boxes= [ [cord * self.resize_size[i % 2] / orig_size[i % 2] for i,cord in enumerate(box) ] for box in boxes]
if self.train :
if random.random() < 0.5:
image , boxes = flip(image, boxes)
if random.random() < 0.5:
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1/8)
if random.random() < 0.5:
factor = random.random()
if factor > 0.5:
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(factor)
if random.random() < 0.5:
factor = random.random()
if factor > 0.5:
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(factor)
if random.random() < 0.5:
factor = random.random()
if factor > 0.5:
enhancer = ImageEnhance.Color(image)
image = enhancer.enhance(factor)
return image , boxes
class Dataset_roi(Dataset):
def __init__(self, pos , neg):
self.pos = pos
self.neg = neg
self.curr = -1
def __getitem__(self, i):
if self.pos.size(0) == 0:
return [] , self.neg[i]
elif self.neg.size(0) == 0 :
return self.pos[i] , []
else:
if min(self.pos.size(0) , self.neg.size(0)) == self.pos.size(0):
self.curr += 1
return self.pos[self.curr % self.pos.size(0)] , self.neg[i]
else:
self.curr += 1
return self.pos[i] , self.neg[ self.curr % self.neg.size(0) ]
def __len__(self):
return max(self.pos.size(0), self.neg.size(0))