-
Notifications
You must be signed in to change notification settings - Fork 0
/
insurance.py
77 lines (53 loc) · 1.57 KB
/
insurance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import pickle
import decimal
import numpy as np
insurance_model = pickle.load(open('models/Insurance.sav', 'rb'))
def currencyInIndiaFormat(n):
d = decimal.Decimal(str(n))
if d.as_tuple().exponent < -2:
s = str(n)
else:
s = '{0:.2f}'.format(n)
l = len(s)
i = l - 1;
res = ''
flag = 0
k = 0
while i >= 0:
if flag == 0:
res = res + s[i]
if s[i] == '.':
flag = 1
elif flag == 1:
k = k + 1
res = res + s[i]
if k == 3 and i - 1 >= 0:
res = res + ','
flag = 2
k = 0
else:
k = k + 1
res = res + s[i]
if k == 2 and i - 1 >= 0:
res = res + ','
flag = 2
k = 0
i = i - 1
return res[::-1]
def insurance_predict(input_data):
input_data_as_numpy_array = np.asarray(input_data)
input_data_reshaped = input_data_as_numpy_array.reshape(1, -1)
prediction = insurance_model.predict(input_data_reshaped)
# print(prediction)
# print('The insurance cost is Indian Rupees ₹', str(round(prediction[0], 2)))
return currencyInIndiaFormat(round(prediction[0], 2))
#
# print(insurance_predict(input_data))
# (['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'insurance'], dtype='object')
# {'sex':{'male':0,'female':1}}
#
# 3 # encoding 'smoker' column
# {'smoker':{'yes':0,'no':1}}
#
# # encoding 'region' column
# {'region':{'southeast':0,'southwest':1,'northeast':2,'northwest':3}}