-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlauncher.py
287 lines (237 loc) · 12.6 KB
/
launcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import argparse
import numpy as np
from keras.models import load_model
from keras.preprocessing import image
from evaluate_model import evaluate_model, extract_hard_samples
from transfer_learning import train_simpler_inception_based_model
from video_annotation import video_fire_detection
from keras.applications.inception_v3 import preprocess_input as inception_preprocess_input
if __name__ == '__main__':
classes = ['fire', 'no_fire', 'start_fire']
parser = argparse.ArgumentParser(description='Convolutional neural network for forest fire detection',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
subparsers = parser.add_subparsers(title='',
description='Network can be trained on a provided dataset or predictions can be'
'made using a pre-trained model. Models can also be evaluated.',
help='', dest='mode')
subparsers.required = True
parser_train = subparsers.add_parser('train',
help='Create and train the simpler InceptionV3-based model.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser_train.add_argument('-data',
type=str,
action='store',
dest='dataset',
help='Path to the dataset on which to train.',
default=argparse.SUPPRESS,
required=True)
parser_train.add_argument('-prop',
type=float,
action='store',
dest='proportion',
help='Proportion of the dataset to be used for training (the rest is for validation).',
default=argparse.SUPPRESS,
required=True)
parser_train.add_argument('-freeze',
type=bool,
action='store',
dest='freeze',
help='Whether to freeze every layer except the last fully connected ones.',
default=argparse.SUPPRESS,
required=True)
parser_train.add_argument('-epochs',
type=int,
action='store',
dest='epochs',
help='Number of epochs.',
default=10,
required=False)
parser_train.add_argument('-batch',
type=int,
action='store',
dest='batch_size',
help='Size of a batch.',
default=32,
required=False)
parser_tune = subparsers.add_parser('tune', help='Fine-tune a pre-trained Inception-V3-based model.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser_tune.add_argument('-model',
type=str,
action='store',
dest='model_path',
help='Path to the pre-trained model.',
default=argparse.SUPPRESS,
required=True)
parser_tune.add_argument('-lr',
type=float,
action='store',
dest='learning_rate',
help='Learning rate to be used for fine-tuning.',
default=0.001,
required=False)
parser_tune.add_argument('-data',
type=str,
action='store',
dest='dataset',
help='Path to the dataset on which to train.',
default=argparse.SUPPRESS,
required=True)
parser_tune.add_argument('-prop',
type=float,
action='store',
dest='proportion',
help='Proportion of the dataset to be used for training (the rest is for validation).',
default=argparse.SUPPRESS,
required=True)
parser_tune.add_argument('-freeze',
type=bool,
action='store',
dest='freeze',
help='Whether to freeze every layer except the last fully connected ones.',
default=argparse.SUPPRESS,
required=True)
parser_tune.add_argument('-epochs',
type=int,
action='store',
dest='epochs',
help='Number of epochs.',
default=10,
required=False)
parser_tune.add_argument('-batch',
type=int,
action='store',
dest='batch_size',
help='Size of a batch.',
default=32,
required=False)
parser_predict = subparsers.add_parser('predict',
help='Perform prediction on a provided picture.')
parser_predict.add_argument('-path',
type=str,
action='store',
dest='image_path',
help='Path to an image.',
default=argparse.SUPPRESS,
required=True)
parser_predict.add_argument('-model',
type=str,
action='store',
dest='model_path',
help='Path to a trained model.',
default=argparse.SUPPRESS,
required=True)
parser_video = subparsers.add_parser('video',
help='Perform prediction on a video.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser_video.add_argument('-in',
type=str,
action='store',
dest='input_video_path',
help='Path to an mp4 video.',
default=argparse.SUPPRESS,
required=True)
parser_video.add_argument('-out',
type=str,
action='store',
dest='output_video_path',
help='Path to output the annotated mp4 video.',
default=argparse.SUPPRESS,
required=True)
parser_video.add_argument('-model',
type=str,
action='store',
dest='model_path',
help='Path to a trained model.',
default=argparse.SUPPRESS,
required=True)
parser_video.add_argument('-freq',
type=int,
action='store',
dest='freq',
help='Prediction is to be made every freq frames.',
default=12,
required=False)
parser_extract = subparsers.add_parser('extract',
help='Extract hard examples from a dataset (samples classified with low '
'confidence).')
parser_extract.add_argument('-data',
type=str,
action='store',
dest='dataset',
help='Path to a dataset.',
default=argparse.SUPPRESS,
required=True)
parser_extract.add_argument('-model',
type=str,
action='store',
dest='model_path',
help='Path to a trained model.',
default=argparse.SUPPRESS,
required=True)
parser_extract.add_argument('-threshold',
type=float,
action='store',
dest='extract_threshold',
help='Threshold for the hard examples.',
default=argparse.SUPPRESS,
required=True)
parser_test = subparsers.add_parser('test',
help='Test a model on a test set of images.')
parser_test.add_argument('-data',
type=str,
action='store',
dest='dataset',
help='Path to a test set.',
default=argparse.SUPPRESS,
required=True)
parser_test.add_argument('-model',
type=str,
action='store',
dest='model_path',
help='Path to a trained model.',
default=argparse.SUPPRESS,
required=True)
parsed = parser.parse_args()
if parsed.mode == "train":
train_simpler_inception_based_model(parsed.dataset,
fine_tune_existing=None,
freeze=parsed.freeze,
learning_rate=0.001,
percentage=parsed.proportion,
nbr_epochs=parsed.epochs,
batch_size=parsed.batch_size)
elif parsed.mode == "tune":
train_simpler_inception_based_model(parsed.dataset,
fine_tune_existing=parsed.model_path,
freeze=parsed.freeze,
learning_rate=parsed.learning_rate,
percentage=parsed.proportion,
nbr_epochs=parsed.epochs,
batch_size=parsed.batch_size)
elif parsed.mode == "predict":
model = load_model(parsed.model_path)
img = image.load_img(parsed.image_path, target_size=(224, 224, 3))
# processed image to feed the network
processed_img = image.img_to_array(img)
processed_img = np.expand_dims(processed_img, axis=0)
processed_img = inception_preprocess_input(processed_img)
# get prediction using the network
predictions = model.predict(processed_img)[0]
print(predictions)
elif parsed.mode == "video":
video_fire_detection(parsed.input_video_path,
parsed.output_video_path,
parsed.model_path,
inception_preprocess_input,
(224, 224),
parsed.freq)
elif parsed.mode == "extract":
print(extract_hard_samples(parsed.model_path,
inception_preprocess_input,
parsed.dataset,
parsed.extract_threshold))
elif parsed.mode == "test":
print(evaluate_model(parsed.model_path,
classes,
inception_preprocess_input,
parsed.dataset))