-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvideo_annotation.py
312 lines (224 loc) · 11.9 KB
/
video_annotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import cv2
import imageio
import numpy as np
from keras.models import load_model
from keras.preprocessing import image
"""
This module contains functions which process an mp4 video and annotate its frames with a prediction by a CNN on whether
a fire is preset or not in the frame. The output is an annotated video.
"""
def video_fire_detection(input_video_path, output_video_path, model_path, model_preprocess, image_size, detection_freq):
"""
Loads a video given by input_video_path, performs fire detection using the model saved in model_path then annotates
frames of the video with the detected class and create an annotated video in output_video_path. For speed, not
every frame is fed to the network for detection. One out of detection_freq frames is fed to the network for
prediction and its prediction is used to annotate the subsequent frames until a new prediction is made. This is also
sound given the 'static' nature of fire and its slow evolution, making subsequent frames somewhat similar. This
version is much faster as frames are not written to the disk and are processed on the fly.
:param input_video_path: input video (must be mp4).
:param output_video_path: output video path.
:param model_path: path to the neural network model.
:param model_preprocess: preprocessing function for the model.
:param image_size: size of the image, extracted from the video and fed to the network.
:param detection_freq: prediction is done every detection_freq frames.
"""
# images extracted from the video are saved to a directory
if not os.path.exists("temp_frames"):
os.makedirs("temp_frames")
classes = ['fire', 'no_fire', 'start_fire']
nbr_classes = 3
video_writer = imageio.get_writer(output_video_path, fps=24,plugin="DICOM")
model = load_model(model_path)
# loading the video
video = cv2.VideoCapture(input_video_path)
# opening the video
if not video.isOpened():
print("Error opening video stream or file")
# frame numbering for the images
frame_nbr = 0
img, max_class, max_proba = None, "unknown", 0
while video.isOpened():
# capture a frame
not_done, frame = video.read()
# we are not finished reading
if not_done:
# save single frame to a temp folder
img_name = "temp-frame" + str(frame_nbr) + ".png"
img_path = "temp_frames/" + img_name
cv2.imwrite(img_path, frame)
# we do not perform a new prediction and use the previous one
if frame_nbr % detection_freq != 0:
# load image for writing the video
img = cv2.imread(img_path)
height, width, channels = img.shape
# convert image to RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# setup text
font = cv2.FONT_HERSHEY_SIMPLEX
text = str(max_class) + " : " + str("{:.2f}".format(max_proba)) + "%"
# get boundary of this text
textsize = cv2.getTextSize(text, font, 1, 2)[0]
# get coordinates based on boundary
textX = (img.shape[1] - textsize[0]) // 2
textY = (img.shape[0] + textsize[1]) // 2
# set the rectangle background to black
rectangle_bgr = (0, 0, 0)
# make the coordinates of the box and draw a box
box_coords = ((textX, textY), (textX + textsize[0], textY - textsize[1]))
cv2.rectangle(img, box_coords[0], box_coords[1], rectangle_bgr, cv2.FILLED)
# add text centered on image
cv2.putText(img, text, (textX, textY), font, 1, (255, 255, 255), 2)
else:
# prediction is performed, first we load the image
img = image.load_img(img_path, target_size=image_size,plugin="DICOM")
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = model_preprocess(img)
# perform the prediction
probabilities = model.predict(img,
batch_size=1,
verbose=0)[0]
# transform [0,1] values into percentages and associate it to its class name
result = [(classes[i], float(probabilities[i]) * 100.0) for i in range(nbr_classes)]
# sort the result by percentage
result.sort(reverse=True, key=lambda x: x[1])
# take the class with max percentage
max_class, max_proba = result[0][0], result[0][1]
# load image for writing the video
img = cv2.imread(img_path)
# convert image to RGB (using cv2 this is required, not when using keras' function)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# setup text
font = cv2.FONT_HERSHEY_SIMPLEX
# probability is formatted to have two digits after the coma
text = str(max_class) + " : " + str("{:.2f}".format(max_proba)) + "%"
# get boundary of this text
textsize = cv2.getTextSize(text, font, 1, 2)[0]
# get coordinates based on boundary
textX = (img.shape[1] - textsize[0]) // 2
textY = (img.shape[0] + textsize[1]) // 2
# set the rectangle background to black
rectangle_bgr = (0, 0, 0)
# make the coordinates of the box
box_coords = ((textX, textY), (textX + textsize[0], textY - textsize[1]))
cv2.rectangle(img, box_coords[0], box_coords[1], rectangle_bgr, cv2.FILLED)
# add text centered on image
cv2.putText(img, text, (textX, textY), font, 1, (255, 255, 255), 2)
frame_nbr = frame_nbr + 1
video_writer.append_data(img)
else:
break
video_writer.close()
video.release()
def extract_images_from_video(video_path, images_directory):
"""
Extract frames from a video specified by video_path and writes them to the folder images_directory.
:param video_path: the path to the mp4 video.
:param images_directory: directory in which to write the images.
"""
# images extracted from the video are saved to a directory
if not os.path.exists(images_directory):
os.makedirs(images_directory)
# loading the video
video = cv2.VideoCapture(video_path)
# opening the video
if not video.isOpened():
print("Error opening video stream or file")
# frame numbering for the images
frame_nbr = 0
while video.isOpened():
# capture a frame
not_done, frame = video.read()
# we are not finished reading
if not_done:
# name the frame and save it as a png file
img_name = "frame_" + str(frame_nbr) + ".png"
img_path = images_directory + img_name
cv2.imwrite(img_path, frame)
frame_nbr = frame_nbr + 1
else:
break
# free video
video.release()
def detect_fire_save_frames(input_video_path, output_video_path, model_path, model_preprocess, image_size,
detection_freq):
"""
Loads a video given by input_video_path, performs fire detection using the model saved in model_path then annotates
frames of the video with the detected class and create an annotated video in output_video_path. For speed, not
every frame is fed to the network for detection. One out of detection_freq frames is fed to the network for
prediction and its prediction is used to annotate the subsequent frames until a new prediction is made. This is also
sound given the 'static' nature of fire and its slow evolution, making subsequent frames somewhat similar. This
version writes all frames to a directory names video_frames/ before predicting.
:param input_video_path: input video (must be mp4).
:param output_video_path: output video path.
:param model_path: path to the neural network model.
:param model_preprocess: preprocessing function for the model.
:param image_size: size of the image, extracted from the video and fed to the network.
:param detection_freq: prediction is done every detection_freq frames.
"""
classes = ['fire', 'no_fire', 'start_fire']
nbr_classes = 3
extract_images_from_video(input_video_path, "./video_frames/")
video_writer = imageio.get_writer(output_video_path, fps=24,plugin="DICOM")
model = load_model(model_path)
max_class, max_proba = "unknown", 0
# sort frames and apply detection every detection_freq frames
frames = []
counter = 0
for img_path in sorted(os.listdir('video_frames'), key=lambda f: int("".join(list(filter(str.isdigit, f))))):
complete_path = 'video_frames/' + img_path
frames.append(complete_path)
# load image for writing the video
img = cv2.imread(complete_path)
# convert image to RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# setup text
font = cv2.FONT_HERSHEY_SIMPLEX
text = str(max_class) + " : " + str(max_proba) + "%"
# get boundary of this text
textsize = cv2.getTextSize(text, font, 1, 2)[0]
# get coords based on boundary
textX = (img.shape[1] - textsize[0]) // 2
textY = (img.shape[0] + textsize[1]) // 2
# print(img, text, (textX, textY), font, 1, (255, 255, 255), 2)
# add text centered on image
cv2.putText(img, text, (textX, textY), font, 1, (255, 255, 255), 2)
if counter % detection_freq == 0:
# load image to predict
img = image.load_img(complete_path, target_size=image_size,plugin="DICOM")
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = model_preprocess(img)
probabilities = model.predict(img,
batch_size=1,
verbose=0,
steps=None,
callbacks=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False)[0]
# transform [0,1] values into percentages and associate it to its class name
result = [(classes[i], float(probabilities[i]) * 100.0) for i in range(nbr_classes)]
# sort the result by percentage
result.sort(reverse=True, key=lambda x: x[1])
# get maximum probability and corresponding class
max_class, max_proba = result[0][0], result[0][1]
# load image for writing the video
img = cv2.imread(complete_path)
# convert image to RGB since we trained images using RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# setup text
font = cv2.FONT_HERSHEY_SIMPLEX
# probability is formatted to have two digits after the coma
text = str(max_class) + " : " + str("{:.2f}".format(max_proba)) + "%"
# get boundary of this text
textsize = cv2.getTextSize(text, font, 1, 2)[0]
# get coordinates based on boundary
textX = (img.shape[1] - textsize[0]) // 2
textY = (img.shape[0] + textsize[1]) // 2
# add text centered on image
cv2.putText(img, text, (textX, textY), font, 1, (255, 255, 255), 2)
counter = counter + 1
video_writer.append_data(img)
video_writer.close()