-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
Copy pathsort_pool.py
43 lines (37 loc) · 1.46 KB
/
sort_pool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import torch.nn.functional as F
from torch.nn import Conv1d, Linear
from torch_geometric.nn import SAGEConv, SortAggregation
class SortPool(torch.nn.Module):
def __init__(self, dataset, num_layers, hidden):
super().__init__()
self.conv1 = SAGEConv(dataset.num_features, hidden)
self.convs = torch.nn.ModuleList()
for i in range(num_layers - 1):
self.convs.append(SAGEConv(hidden, hidden))
self.pool = SortAggregation(k=30)
self.conv1d = Conv1d(hidden, 32, 5)
self.lin1 = Linear(32 * (30 - 5 + 1), hidden)
self.lin2 = Linear(hidden, dataset.num_classes)
def reset_parameters(self):
self.conv1.reset_parameters()
for conv in self.convs:
conv.reset_parameters()
self.conv1d.reset_parameters()
self.lin1.reset_parameters()
self.lin2.reset_parameters()
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
x = F.relu(self.conv1(x, edge_index))
for conv in self.convs:
x = F.relu(conv(x, edge_index))
x = self.pool(x, batch)
x = x.view(len(x), self.k, -1).permute(0, 2, 1)
x = F.relu(self.conv1d(x))
x = x.view(len(x), -1)
x = F.relu(self.lin1(x))
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin2(x)
return F.log_softmax(x, dim=-1)
def __repr__(self):
return self.__class__.__name__