-
-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
dataclasses.py
1127 lines (993 loc) · 45.7 KB
/
dataclasses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Plugin that provides support for dataclasses."""
from __future__ import annotations
from typing import TYPE_CHECKING, Final, Iterator, Literal
from mypy import errorcodes, message_registry
from mypy.expandtype import expand_type, expand_type_by_instance
from mypy.meet import meet_types
from mypy.messages import format_type_bare
from mypy.nodes import (
ARG_NAMED,
ARG_NAMED_OPT,
ARG_OPT,
ARG_POS,
ARG_STAR,
ARG_STAR2,
MDEF,
Argument,
AssignmentStmt,
Block,
CallExpr,
ClassDef,
Context,
DataclassTransformSpec,
Decorator,
EllipsisExpr,
Expression,
FuncDef,
FuncItem,
IfStmt,
JsonDict,
NameExpr,
Node,
PlaceholderNode,
RefExpr,
Statement,
SymbolTableNode,
TempNode,
TypeAlias,
TypeInfo,
TypeVarExpr,
Var,
)
from mypy.plugin import ClassDefContext, FunctionSigContext, SemanticAnalyzerPluginInterface
from mypy.plugins.common import (
_get_callee_type,
_get_decorator_bool_argument,
add_attribute_to_class,
add_method_to_class,
deserialize_and_fixup_type,
)
from mypy.semanal_shared import find_dataclass_transform_spec, require_bool_literal_argument
from mypy.server.trigger import make_wildcard_trigger
from mypy.state import state
from mypy.typeops import map_type_from_supertype, try_getting_literals_from_type
from mypy.types import (
AnyType,
CallableType,
FunctionLike,
Instance,
LiteralType,
NoneType,
ProperType,
TupleType,
Type,
TypeOfAny,
TypeVarId,
TypeVarType,
UninhabitedType,
UnionType,
get_proper_type,
)
from mypy.typevars import fill_typevars
if TYPE_CHECKING:
from mypy.checker import TypeChecker
# The set of decorators that generate dataclasses.
dataclass_makers: Final = {"dataclass", "dataclasses.dataclass"}
SELF_TVAR_NAME: Final = "_DT"
_TRANSFORM_SPEC_FOR_DATACLASSES: Final = DataclassTransformSpec(
eq_default=True,
order_default=False,
kw_only_default=False,
frozen_default=False,
field_specifiers=("dataclasses.Field", "dataclasses.field"),
)
_INTERNAL_REPLACE_SYM_NAME: Final = "__mypy-replace"
_INTERNAL_POST_INIT_SYM_NAME: Final = "__mypy-post_init"
class DataclassAttribute:
def __init__(
self,
name: str,
alias: str | None,
is_in_init: bool,
is_init_var: bool,
has_default: bool,
line: int,
column: int,
type: Type | None,
info: TypeInfo,
kw_only: bool,
is_neither_frozen_nor_nonfrozen: bool,
api: SemanticAnalyzerPluginInterface,
) -> None:
self.name = name
self.alias = alias
self.is_in_init = is_in_init
self.is_init_var = is_init_var
self.has_default = has_default
self.line = line
self.column = column
self.type = type # Type as __init__ argument
self.info = info
self.kw_only = kw_only
self.is_neither_frozen_nor_nonfrozen = is_neither_frozen_nor_nonfrozen
self._api = api
def to_argument(
self, current_info: TypeInfo, *, of: Literal["__init__", "replace", "__post_init__"]
) -> Argument:
if of == "__init__":
arg_kind = ARG_POS
if self.kw_only and self.has_default:
arg_kind = ARG_NAMED_OPT
elif self.kw_only and not self.has_default:
arg_kind = ARG_NAMED
elif not self.kw_only and self.has_default:
arg_kind = ARG_OPT
elif of == "replace":
arg_kind = ARG_NAMED if self.is_init_var and not self.has_default else ARG_NAMED_OPT
elif of == "__post_init__":
# We always use `ARG_POS` without a default value, because it is practical.
# Consider this case:
#
# @dataclass
# class My:
# y: dataclasses.InitVar[str] = 'a'
# def __post_init__(self, y: str) -> None: ...
#
# We would be *required* to specify `y: str = ...` if default is added here.
# But, most people won't care about adding default values to `__post_init__`,
# because it is not designed to be called directly, and duplicating default values
# for the sake of type-checking is unpleasant.
arg_kind = ARG_POS
return Argument(
variable=self.to_var(current_info),
type_annotation=self.expand_type(current_info),
initializer=EllipsisExpr() if self.has_default else None, # Only used by stubgen
kind=arg_kind,
)
def expand_type(self, current_info: TypeInfo) -> Type | None:
if self.type is not None and self.info.self_type is not None:
# In general, it is not safe to call `expand_type()` during semantic analysis,
# however this plugin is called very late, so all types should be fully ready.
# Also, it is tricky to avoid eager expansion of Self types here (e.g. because
# we serialize attributes).
with state.strict_optional_set(self._api.options.strict_optional):
return expand_type(
self.type, {self.info.self_type.id: fill_typevars(current_info)}
)
return self.type
def to_var(self, current_info: TypeInfo) -> Var:
return Var(self.alias or self.name, self.expand_type(current_info))
def serialize(self) -> JsonDict:
assert self.type
return {
"name": self.name,
"alias": self.alias,
"is_in_init": self.is_in_init,
"is_init_var": self.is_init_var,
"has_default": self.has_default,
"line": self.line,
"column": self.column,
"type": self.type.serialize(),
"kw_only": self.kw_only,
"is_neither_frozen_nor_nonfrozen": self.is_neither_frozen_nor_nonfrozen,
}
@classmethod
def deserialize(
cls, info: TypeInfo, data: JsonDict, api: SemanticAnalyzerPluginInterface
) -> DataclassAttribute:
data = data.copy()
typ = deserialize_and_fixup_type(data.pop("type"), api)
return cls(type=typ, info=info, **data, api=api)
def expand_typevar_from_subtype(self, sub_type: TypeInfo) -> None:
"""Expands type vars in the context of a subtype when an attribute is inherited
from a generic super type."""
if self.type is not None:
with state.strict_optional_set(self._api.options.strict_optional):
self.type = map_type_from_supertype(self.type, sub_type, self.info)
class DataclassTransformer:
"""Implement the behavior of @dataclass.
Note that this may be executed multiple times on the same class, so
everything here must be idempotent.
This runs after the main semantic analysis pass, so you can assume that
there are no placeholders.
"""
def __init__(
self,
cls: ClassDef,
# Statement must also be accepted since class definition itself may be passed as the reason
# for subclass/metaclass-based uses of `typing.dataclass_transform`
reason: Expression | Statement,
spec: DataclassTransformSpec,
api: SemanticAnalyzerPluginInterface,
) -> None:
self._cls = cls
self._reason = reason
self._spec = spec
self._api = api
def transform(self) -> bool:
"""Apply all the necessary transformations to the underlying
dataclass so as to ensure it is fully type checked according
to the rules in PEP 557.
"""
info = self._cls.info
attributes = self.collect_attributes()
if attributes is None:
# Some definitions are not ready. We need another pass.
return False
for attr in attributes:
if attr.type is None:
return False
decorator_arguments = {
"init": self._get_bool_arg("init", True),
"eq": self._get_bool_arg("eq", self._spec.eq_default),
"order": self._get_bool_arg("order", self._spec.order_default),
"frozen": self._get_bool_arg("frozen", self._spec.frozen_default),
"slots": self._get_bool_arg("slots", False),
"match_args": self._get_bool_arg("match_args", True),
}
py_version = self._api.options.python_version
# If there are no attributes, it may be that the semantic analyzer has not
# processed them yet. In order to work around this, we can simply skip generating
# __init__ if there are no attributes, because if the user truly did not define any,
# then the object default __init__ with an empty signature will be present anyway.
if (
decorator_arguments["init"]
and ("__init__" not in info.names or info.names["__init__"].plugin_generated)
and attributes
):
args = [
attr.to_argument(info, of="__init__")
for attr in attributes
if attr.is_in_init and not self._is_kw_only_type(attr.type)
]
if info.fallback_to_any:
# Make positional args optional since we don't know their order.
# This will at least allow us to typecheck them if they are called
# as kwargs
for arg in args:
if arg.kind == ARG_POS:
arg.kind = ARG_OPT
existing_args_names = {arg.variable.name for arg in args}
gen_args_name = "generated_args"
while gen_args_name in existing_args_names:
gen_args_name += "_"
gen_kwargs_name = "generated_kwargs"
while gen_kwargs_name in existing_args_names:
gen_kwargs_name += "_"
args = [
Argument(Var(gen_args_name), AnyType(TypeOfAny.explicit), None, ARG_STAR),
*args,
Argument(Var(gen_kwargs_name), AnyType(TypeOfAny.explicit), None, ARG_STAR2),
]
add_method_to_class(
self._api, self._cls, "__init__", args=args, return_type=NoneType()
)
if (
decorator_arguments["eq"]
and info.get("__eq__") is None
or decorator_arguments["order"]
):
# Type variable for self types in generated methods.
obj_type = self._api.named_type("builtins.object")
self_tvar_expr = TypeVarExpr(
SELF_TVAR_NAME,
info.fullname + "." + SELF_TVAR_NAME,
[],
obj_type,
AnyType(TypeOfAny.from_omitted_generics),
)
info.names[SELF_TVAR_NAME] = SymbolTableNode(MDEF, self_tvar_expr)
# Add <, >, <=, >=, but only if the class has an eq method.
if decorator_arguments["order"]:
if not decorator_arguments["eq"]:
self._api.fail('"eq" must be True if "order" is True', self._reason)
for method_name in ["__lt__", "__gt__", "__le__", "__ge__"]:
# Like for __eq__ and __ne__, we want "other" to match
# the self type.
obj_type = self._api.named_type("builtins.object")
order_tvar_def = TypeVarType(
SELF_TVAR_NAME,
f"{info.fullname}.{SELF_TVAR_NAME}",
id=TypeVarId(-1, namespace=f"{info.fullname}.{method_name}"),
values=[],
upper_bound=obj_type,
default=AnyType(TypeOfAny.from_omitted_generics),
)
order_return_type = self._api.named_type("builtins.bool")
order_args = [
Argument(Var("other", order_tvar_def), order_tvar_def, None, ARG_POS)
]
existing_method = info.get(method_name)
if existing_method is not None and not existing_method.plugin_generated:
assert existing_method.node
self._api.fail(
f'You may not have a custom "{method_name}" method when "order" is True',
existing_method.node,
)
add_method_to_class(
self._api,
self._cls,
method_name,
args=order_args,
return_type=order_return_type,
self_type=order_tvar_def,
tvar_def=order_tvar_def,
)
parent_decorator_arguments = []
for parent in info.mro[1:-1]:
parent_args = parent.metadata.get("dataclass")
# Ignore parent classes that directly specify a dataclass transform-decorated metaclass
# when searching for usage of the frozen parameter. PEP 681 states that a class that
# directly specifies such a metaclass must be treated as neither frozen nor non-frozen.
if parent_args and not _has_direct_dataclass_transform_metaclass(parent):
parent_decorator_arguments.append(parent_args)
if decorator_arguments["frozen"]:
if any(not parent["frozen"] for parent in parent_decorator_arguments):
self._api.fail("Cannot inherit frozen dataclass from a non-frozen one", info)
self._propertize_callables(attributes, settable=False)
self._freeze(attributes)
else:
if any(parent["frozen"] for parent in parent_decorator_arguments):
self._api.fail("Cannot inherit non-frozen dataclass from a frozen one", info)
self._propertize_callables(attributes)
if decorator_arguments["slots"]:
self.add_slots(info, attributes, correct_version=py_version >= (3, 10))
self.reset_init_only_vars(info, attributes)
if (
decorator_arguments["match_args"]
and (
"__match_args__" not in info.names or info.names["__match_args__"].plugin_generated
)
and py_version >= (3, 10)
):
str_type = self._api.named_type("builtins.str")
literals: list[Type] = [
LiteralType(attr.name, str_type) for attr in attributes if attr.is_in_init
]
match_args_type = TupleType(literals, self._api.named_type("builtins.tuple"))
add_attribute_to_class(self._api, self._cls, "__match_args__", match_args_type)
self._add_dataclass_fields_magic_attribute()
self._add_internal_replace_method(attributes)
if self._api.options.python_version >= (3, 13):
self._add_dunder_replace(attributes)
if "__post_init__" in info.names:
self._add_internal_post_init_method(attributes)
info.metadata["dataclass"] = {
"attributes": [attr.serialize() for attr in attributes],
"frozen": decorator_arguments["frozen"],
}
return True
def _add_dunder_replace(self, attributes: list[DataclassAttribute]) -> None:
"""Add a `__replace__` method to the class, which is used to replace attributes in the `copy` module."""
args = [
attr.to_argument(self._cls.info, of="replace")
for attr in attributes
if attr.is_in_init
]
type_vars = [tv for tv in self._cls.type_vars]
add_method_to_class(
self._api,
self._cls,
"__replace__",
args=args,
return_type=Instance(self._cls.info, type_vars),
)
def _add_internal_replace_method(self, attributes: list[DataclassAttribute]) -> None:
"""
Stashes the signature of 'dataclasses.replace(...)' for this specific dataclass
to be used later whenever 'dataclasses.replace' is called for this dataclass.
"""
add_method_to_class(
self._api,
self._cls,
_INTERNAL_REPLACE_SYM_NAME,
args=[attr.to_argument(self._cls.info, of="replace") for attr in attributes],
return_type=NoneType(),
is_staticmethod=True,
)
def _add_internal_post_init_method(self, attributes: list[DataclassAttribute]) -> None:
add_method_to_class(
self._api,
self._cls,
_INTERNAL_POST_INIT_SYM_NAME,
args=[
attr.to_argument(self._cls.info, of="__post_init__")
for attr in attributes
if attr.is_init_var
],
return_type=NoneType(),
)
def add_slots(
self, info: TypeInfo, attributes: list[DataclassAttribute], *, correct_version: bool
) -> None:
if not correct_version:
# This means that version is lower than `3.10`,
# it is just a non-existent argument for `dataclass` function.
self._api.fail(
'Keyword argument "slots" for "dataclass" is only valid in Python 3.10 and higher',
self._reason,
)
return
generated_slots = {attr.name for attr in attributes}
if (info.slots is not None and info.slots != generated_slots) or info.names.get(
"__slots__"
):
# This means we have a slots conflict.
# Class explicitly specifies a different `__slots__` field.
# And `@dataclass(slots=True)` is used.
# In runtime this raises a type error.
self._api.fail(
'"{}" both defines "__slots__" and is used with "slots=True"'.format(
self._cls.name
),
self._cls,
)
return
if any(p.slots is None for p in info.mro[1:-1]):
# At least one type in mro (excluding `self` and `object`)
# does not have concrete `__slots__` defined. Ignoring.
return
info.slots = generated_slots
# Now, insert `.__slots__` attribute to class namespace:
slots_type = TupleType(
[self._api.named_type("builtins.str") for _ in generated_slots],
self._api.named_type("builtins.tuple"),
)
add_attribute_to_class(self._api, self._cls, "__slots__", slots_type)
def reset_init_only_vars(self, info: TypeInfo, attributes: list[DataclassAttribute]) -> None:
"""Remove init-only vars from the class and reset init var declarations."""
for attr in attributes:
if attr.is_init_var:
if attr.name in info.names:
del info.names[attr.name]
else:
# Nodes of superclass InitVars not used in __init__ cannot be reached.
assert attr.is_init_var
for stmt in info.defn.defs.body:
if isinstance(stmt, AssignmentStmt) and stmt.unanalyzed_type:
lvalue = stmt.lvalues[0]
if isinstance(lvalue, NameExpr) and lvalue.name == attr.name:
# Reset node so that another semantic analysis pass will
# recreate a symbol node for this attribute.
lvalue.node = None
def _get_assignment_statements_from_if_statement(
self, stmt: IfStmt
) -> Iterator[AssignmentStmt]:
for body in stmt.body:
if not body.is_unreachable:
yield from self._get_assignment_statements_from_block(body)
if stmt.else_body is not None and not stmt.else_body.is_unreachable:
yield from self._get_assignment_statements_from_block(stmt.else_body)
def _get_assignment_statements_from_block(self, block: Block) -> Iterator[AssignmentStmt]:
for stmt in block.body:
if isinstance(stmt, AssignmentStmt):
yield stmt
elif isinstance(stmt, IfStmt):
yield from self._get_assignment_statements_from_if_statement(stmt)
def collect_attributes(self) -> list[DataclassAttribute] | None:
"""Collect all attributes declared in the dataclass and its parents.
All assignments of the form
a: SomeType
b: SomeOtherType = ...
are collected.
Return None if some dataclass base class hasn't been processed
yet and thus we'll need to ask for another pass.
"""
cls = self._cls
# First, collect attributes belonging to any class in the MRO, ignoring duplicates.
#
# We iterate through the MRO in reverse because attrs defined in the parent must appear
# earlier in the attributes list than attrs defined in the child. See:
# https://docs.python.org/3/library/dataclasses.html#inheritance
#
# However, we also want attributes defined in the subtype to override ones defined
# in the parent. We can implement this via a dict without disrupting the attr order
# because dicts preserve insertion order in Python 3.7+.
found_attrs: dict[str, DataclassAttribute] = {}
found_dataclass_supertype = False
for info in reversed(cls.info.mro[1:-1]):
if "dataclass_tag" in info.metadata and "dataclass" not in info.metadata:
# We haven't processed the base class yet. Need another pass.
return None
if "dataclass" not in info.metadata:
continue
# Each class depends on the set of attributes in its dataclass ancestors.
self._api.add_plugin_dependency(make_wildcard_trigger(info.fullname))
found_dataclass_supertype = True
for data in info.metadata["dataclass"]["attributes"]:
name: str = data["name"]
attr = DataclassAttribute.deserialize(info, data, self._api)
# TODO: We shouldn't be performing type operations during the main
# semantic analysis pass, since some TypeInfo attributes might
# still be in flux. This should be performed in a later phase.
attr.expand_typevar_from_subtype(cls.info)
found_attrs[name] = attr
sym_node = cls.info.names.get(name)
if sym_node and sym_node.node and not isinstance(sym_node.node, Var):
self._api.fail(
"Dataclass attribute may only be overridden by another attribute",
sym_node.node,
)
# Second, collect attributes belonging to the current class.
current_attr_names: set[str] = set()
kw_only = self._get_bool_arg("kw_only", self._spec.kw_only_default)
for stmt in self._get_assignment_statements_from_block(cls.defs):
# Any assignment that doesn't use the new type declaration
# syntax can be ignored out of hand.
if not stmt.new_syntax:
continue
# a: int, b: str = 1, 'foo' is not supported syntax so we
# don't have to worry about it.
lhs = stmt.lvalues[0]
if not isinstance(lhs, NameExpr):
continue
sym = cls.info.names.get(lhs.name)
if sym is None:
# There was probably a semantic analysis error.
continue
node = sym.node
assert not isinstance(node, PlaceholderNode)
if isinstance(node, TypeAlias):
self._api.fail(
("Type aliases inside dataclass definitions are not supported at runtime"),
node,
)
# Skip processing this node. This doesn't match the runtime behaviour,
# but the only alternative would be to modify the SymbolTable,
# and it's a little hairy to do that in a plugin.
continue
if isinstance(node, Decorator):
# This might be a property / field name clash.
# We will issue an error later.
continue
assert isinstance(node, Var)
# x: ClassVar[int] is ignored by dataclasses.
if node.is_classvar:
continue
# x: InitVar[int] is turned into x: int and is removed from the class.
is_init_var = False
node_type = get_proper_type(node.type)
if (
isinstance(node_type, Instance)
and node_type.type.fullname == "dataclasses.InitVar"
):
is_init_var = True
node.type = node_type.args[0]
if self._is_kw_only_type(node_type):
kw_only = True
has_field_call, field_args = self._collect_field_args(stmt.rvalue)
is_in_init_param = field_args.get("init")
if is_in_init_param is None:
is_in_init = self._get_default_init_value_for_field_specifier(stmt.rvalue)
else:
is_in_init = bool(self._api.parse_bool(is_in_init_param))
has_default = False
# Ensure that something like x: int = field() is rejected
# after an attribute with a default.
if has_field_call:
has_default = (
"default" in field_args
or "default_factory" in field_args
# alias for default_factory defined in PEP 681
or "factory" in field_args
)
# All other assignments are already type checked.
elif not isinstance(stmt.rvalue, TempNode):
has_default = True
if not has_default and self._spec is _TRANSFORM_SPEC_FOR_DATACLASSES:
# Make all non-default dataclass attributes implicit because they are de-facto
# set on self in the generated __init__(), not in the class body. On the other
# hand, we don't know how custom dataclass transforms initialize attributes,
# so we don't treat them as implicit. This is required to support descriptors
# (https://github.com/python/mypy/issues/14868).
sym.implicit = True
is_kw_only = kw_only
# Use the kw_only field arg if it is provided. Otherwise use the
# kw_only value from the decorator parameter.
field_kw_only_param = field_args.get("kw_only")
if field_kw_only_param is not None:
value = self._api.parse_bool(field_kw_only_param)
if value is not None:
is_kw_only = value
else:
self._api.fail('"kw_only" argument must be a boolean literal', stmt.rvalue)
if sym.type is None and node.is_final and node.is_inferred:
# This is a special case, assignment like x: Final = 42 is classified
# annotated above, but mypy strips the `Final` turning it into x = 42.
# We do not support inferred types in dataclasses, so we can try inferring
# type for simple literals, and otherwise require an explicit type
# argument for Final[...].
typ = self._api.analyze_simple_literal_type(stmt.rvalue, is_final=True)
if typ:
node.type = typ
else:
self._api.fail(
"Need type argument for Final[...] with non-literal default in dataclass",
stmt,
)
node.type = AnyType(TypeOfAny.from_error)
alias = None
if "alias" in field_args:
alias = self._api.parse_str_literal(field_args["alias"])
if alias is None:
self._api.fail(
message_registry.DATACLASS_FIELD_ALIAS_MUST_BE_LITERAL,
stmt.rvalue,
code=errorcodes.LITERAL_REQ,
)
current_attr_names.add(lhs.name)
with state.strict_optional_set(self._api.options.strict_optional):
init_type = self._infer_dataclass_attr_init_type(sym, lhs.name, stmt)
found_attrs[lhs.name] = DataclassAttribute(
name=lhs.name,
alias=alias,
is_in_init=is_in_init,
is_init_var=is_init_var,
has_default=has_default,
line=stmt.line,
column=stmt.column,
type=init_type,
info=cls.info,
kw_only=is_kw_only,
is_neither_frozen_nor_nonfrozen=_has_direct_dataclass_transform_metaclass(
cls.info
),
api=self._api,
)
all_attrs = list(found_attrs.values())
if found_dataclass_supertype:
all_attrs.sort(key=lambda a: a.kw_only)
# Third, ensure that arguments without a default don't follow
# arguments that have a default and that the KW_ONLY sentinel
# is only provided once.
found_default = False
found_kw_sentinel = False
for attr in all_attrs:
# If we find any attribute that is_in_init, not kw_only, and that
# doesn't have a default after one that does have one,
# then that's an error.
if found_default and attr.is_in_init and not attr.has_default and not attr.kw_only:
# If the issue comes from merging different classes, report it
# at the class definition point.
context: Context = cls
if attr.name in current_attr_names:
context = Context(line=attr.line, column=attr.column)
self._api.fail(
"Attributes without a default cannot follow attributes with one", context
)
found_default = found_default or (attr.has_default and attr.is_in_init)
if found_kw_sentinel and self._is_kw_only_type(attr.type):
context = cls
if attr.name in current_attr_names:
context = Context(line=attr.line, column=attr.column)
self._api.fail(
"There may not be more than one field with the KW_ONLY type", context
)
found_kw_sentinel = found_kw_sentinel or self._is_kw_only_type(attr.type)
return all_attrs
def _freeze(self, attributes: list[DataclassAttribute]) -> None:
"""Converts all attributes to @property methods in order to
emulate frozen classes.
"""
info = self._cls.info
for attr in attributes:
# Classes that directly specify a dataclass_transform metaclass must be neither frozen
# non non-frozen per PEP681. Though it is surprising, this means that attributes from
# such a class must be writable even if the rest of the class hierarchy is frozen. This
# matches the behavior of Pyright (the reference implementation).
if attr.is_neither_frozen_nor_nonfrozen:
continue
sym_node = info.names.get(attr.name)
if sym_node is not None:
var = sym_node.node
if isinstance(var, Var):
var.is_property = True
else:
var = attr.to_var(info)
var.info = info
var.is_property = True
var._fullname = info.fullname + "." + var.name
info.names[var.name] = SymbolTableNode(MDEF, var)
def _propertize_callables(
self, attributes: list[DataclassAttribute], settable: bool = True
) -> None:
"""Converts all attributes with callable types to @property methods.
This avoids the typechecker getting confused and thinking that
`my_dataclass_instance.callable_attr(foo)` is going to receive a
`self` argument (it is not).
"""
info = self._cls.info
for attr in attributes:
if isinstance(get_proper_type(attr.type), CallableType):
var = attr.to_var(info)
var.info = info
var.is_property = True
var.is_settable_property = settable
var._fullname = info.fullname + "." + var.name
info.names[var.name] = SymbolTableNode(MDEF, var)
def _is_kw_only_type(self, node: Type | None) -> bool:
"""Checks if the type of the node is the KW_ONLY sentinel value."""
if node is None:
return False
node_type = get_proper_type(node)
if not isinstance(node_type, Instance):
return False
return node_type.type.fullname == "dataclasses.KW_ONLY"
def _add_dataclass_fields_magic_attribute(self) -> None:
attr_name = "__dataclass_fields__"
any_type = AnyType(TypeOfAny.explicit)
# For `dataclasses`, use the type `dict[str, Field[Any]]` for accuracy. For dataclass
# transforms, it's inaccurate to use `Field` since a given transform may use a completely
# different type (or none); fall back to `Any` there.
#
# In either case, we're aiming to match the Typeshed stub for `is_dataclass`, which expects
# the instance to have a `__dataclass_fields__` attribute of type `dict[str, Field[Any]]`.
if self._spec is _TRANSFORM_SPEC_FOR_DATACLASSES:
field_type = self._api.named_type_or_none("dataclasses.Field", [any_type]) or any_type
else:
field_type = any_type
attr_type = self._api.named_type(
"builtins.dict", [self._api.named_type("builtins.str"), field_type]
)
var = Var(name=attr_name, type=attr_type)
var.info = self._cls.info
var._fullname = self._cls.info.fullname + "." + attr_name
var.is_classvar = True
self._cls.info.names[attr_name] = SymbolTableNode(
kind=MDEF, node=var, plugin_generated=True
)
def _collect_field_args(self, expr: Expression) -> tuple[bool, dict[str, Expression]]:
"""Returns a tuple where the first value represents whether or not
the expression is a call to dataclass.field and the second is a
dictionary of the keyword arguments that field() was called with.
"""
if (
isinstance(expr, CallExpr)
and isinstance(expr.callee, RefExpr)
and expr.callee.fullname in self._spec.field_specifiers
):
# field() only takes keyword arguments.
args = {}
for name, arg, kind in zip(expr.arg_names, expr.args, expr.arg_kinds):
if not kind.is_named():
if kind.is_named(star=True):
# This means that `field` is used with `**` unpacking,
# the best we can do for now is not to fail.
# TODO: we can infer what's inside `**` and try to collect it.
message = 'Unpacking **kwargs in "field()" is not supported'
elif self._spec is not _TRANSFORM_SPEC_FOR_DATACLASSES:
# dataclasses.field can only be used with keyword args, but this
# restriction is only enforced for the *standardized* arguments to
# dataclass_transform field specifiers. If this is not a
# dataclasses.dataclass class, we can just skip positional args safely.
continue
else:
message = '"field()" does not accept positional arguments'
self._api.fail(message, expr)
return True, {}
assert name is not None
args[name] = arg
return True, args
return False, {}
def _get_bool_arg(self, name: str, default: bool) -> bool:
# Expressions are always CallExprs (either directly or via a wrapper like Decorator), so
# we can use the helpers from common
if isinstance(self._reason, Expression):
return _get_decorator_bool_argument(
ClassDefContext(self._cls, self._reason, self._api), name, default
)
# Subclass/metaclass use of `typing.dataclass_transform` reads the parameters from the
# class's keyword arguments (ie `class Subclass(Parent, kwarg1=..., kwarg2=...)`)
expression = self._cls.keywords.get(name)
if expression is not None:
return require_bool_literal_argument(self._api, expression, name, default)
return default
def _get_default_init_value_for_field_specifier(self, call: Expression) -> bool:
"""
Find a default value for the `init` parameter of the specifier being called. If the
specifier's type signature includes an `init` parameter with a type of `Literal[True]` or
`Literal[False]`, return the appropriate boolean value from the literal. Otherwise,
fall back to the standard default of `True`.
"""
if not isinstance(call, CallExpr):
return True
specifier_type = _get_callee_type(call)
if specifier_type is None:
return True
parameter = specifier_type.argument_by_name("init")
if parameter is None:
return True
literals = try_getting_literals_from_type(parameter.typ, bool, "builtins.bool")
if literals is None or len(literals) != 1:
return True
return literals[0]
def _infer_dataclass_attr_init_type(
self, sym: SymbolTableNode, name: str, context: Context
) -> Type | None:
"""Infer __init__ argument type for an attribute.
In particular, possibly use the signature of __set__.
"""
default = sym.type
if sym.implicit:
return default
t = get_proper_type(sym.type)
# Perform a simple-minded inference from the signature of __set__, if present.
# We can't use mypy.checkmember here, since this plugin runs before type checking.
# We only support some basic scanerios here, which is hopefully sufficient for
# the vast majority of use cases.
if not isinstance(t, Instance):
return default
setter = t.type.get("__set__")
if setter:
if isinstance(setter.node, FuncDef):
super_info = t.type.get_containing_type_info("__set__")
assert super_info
if setter.type:
setter_type = get_proper_type(
map_type_from_supertype(setter.type, t.type, super_info)
)
else:
return AnyType(TypeOfAny.unannotated)
if isinstance(setter_type, CallableType) and setter_type.arg_kinds == [
ARG_POS,
ARG_POS,
ARG_POS,
]:
return expand_type_by_instance(setter_type.arg_types[2], t)
else:
self._api.fail(
f'Unsupported signature for "__set__" in "{t.type.name}"', context
)
else:
self._api.fail(f'Unsupported "__set__" in "{t.type.name}"', context)
return default
def add_dataclass_tag(info: TypeInfo) -> None:
# The value is ignored, only the existence matters.
info.metadata["dataclass_tag"] = {}
def dataclass_tag_callback(ctx: ClassDefContext) -> None:
"""Record that we have a dataclass in the main semantic analysis pass.
The later pass implemented by DataclassTransformer will use this
to detect dataclasses in base classes.
"""
add_dataclass_tag(ctx.cls.info)
def dataclass_class_maker_callback(ctx: ClassDefContext) -> bool:
"""Hooks into the class typechecking process to add support for dataclasses."""
transformer = DataclassTransformer(
ctx.cls, ctx.reason, _get_transform_spec(ctx.reason), ctx.api
)
return transformer.transform()
def _get_transform_spec(reason: Expression) -> DataclassTransformSpec:
"""Find the relevant transform parameters from the decorator/parent class/metaclass that
triggered the dataclasses plugin.
Although the resulting DataclassTransformSpec is based on the typing.dataclass_transform
function, we also use it for traditional dataclasses.dataclass classes as well for simplicity.
In those cases, we return a default spec rather than one based on a call to
`typing.dataclass_transform`.
"""
if _is_dataclasses_decorator(reason):
return _TRANSFORM_SPEC_FOR_DATACLASSES
spec = find_dataclass_transform_spec(reason)
assert spec is not None, (
"trying to find dataclass transform spec, but reason is neither dataclasses.dataclass nor "
"decorated with typing.dataclass_transform"
)
return spec
def _is_dataclasses_decorator(node: Node) -> bool:
if isinstance(node, CallExpr):
node = node.callee
if isinstance(node, RefExpr):
return node.fullname in dataclass_makers
return False
def _has_direct_dataclass_transform_metaclass(info: TypeInfo) -> bool:
return (
info.declared_metaclass is not None
and info.declared_metaclass.type.dataclass_transform_spec is not None